Unsupervised Learning Approach to Anomaly Detection in Gravitational Wave Data
- URL: http://arxiv.org/abs/2411.19450v2
- Date: Sat, 14 Dec 2024 19:12:09 GMT
- Title: Unsupervised Learning Approach to Anomaly Detection in Gravitational Wave Data
- Authors: Ammar Fayad,
- Abstract summary: We propose an unsupervised anomaly detection method using variational autoencoders (VAEs) to analyze Gravitational waves (GW) data.
VAEs accurately reconstructs noise inputs while failing to reconstruct anomalies, such as GW signals, which results in measurable spikes in the reconstruction error.
This study introduces VAEs as a robust, unsupervised approach for identifying anomalies in GW data, which offers a scalable framework for detecting known and potentially new phenomena in physics.
- Score: 0.0
- License:
- Abstract: Gravitational waves (GW), predicted by Einstein's General Theory of Relativity, provide a powerful probe of astrophysical phenomena and fundamental physics. In this work, we propose an unsupervised anomaly detection method using variational autoencoders (VAEs) to analyze GW time-series data. By training on noise-only data, the VAE accurately reconstructs noise inputs while failing to reconstruct anomalies, such as GW signals, which results in measurable spikes in the reconstruction error. The method was applied to data from the LIGO H1 and L1 detectors. Evaluation on testing datasets containing both noise and GW events demonstrated reliable detection, achieving an area under the ROC curve (AUC) of 0.89. This study introduces VAEs as a robust, unsupervised approach for identifying anomalies in GW data, which offers a scalable framework for detecting known and potentially new phenomena in physics.
Related papers
- DeepExtractor: Time-domain reconstruction of signals and glitches in gravitational wave data with deep learning [2.637315570643508]
We present DeepExtractor, a deep learning framework designed to reconstruct signals and glitches with power exceeding interferometer noise.
We validate DeepExtractor's effectiveness through three experiments.
DeepExtractor achieves a median mismatch of only 0.9% for simulated glitches, outperforming several deep learning baselines.
arXiv Detail & Related papers (2025-01-30T15:25:30Z) - Real-time gravitational-wave inference for binary neutron stars using machine learning [71.29593576787549]
We present a machine learning framework that performs complete BNS inference in just one second without making any approximations.
Our approach enhances multi-messenger observations by providing (i) accurate localization even before the merger; (ii) improved localization precision by $sim30%$ compared to approximate low-latency methods; and (iii) detailed information on luminosity distance, inclination, and masses.
arXiv Detail & Related papers (2024-07-12T18:00:02Z) - Video Anomaly Detection via Spatio-Temporal Pseudo-Anomaly Generation : A Unified Approach [49.995833831087175]
This work proposes a novel method for generating generic Video-temporal PAs by inpainting a masked out region of an image.
In addition, we present a simple unified framework to detect real-world anomalies under the OCC setting.
Our method performs on par with other existing state-of-the-art PAs generation and reconstruction based methods under the OCC setting.
arXiv Detail & Related papers (2023-11-27T13:14:06Z) - Are we certain it's anomalous? [57.729669157989235]
Anomaly detection in time series is a complex task since anomalies are rare due to highly non-linear temporal correlations.
Here we propose the novel use of Hyperbolic uncertainty for Anomaly Detection (HypAD)
HypAD learns self-supervisedly to reconstruct the input signal.
arXiv Detail & Related papers (2022-11-16T21:31:39Z) - Training Process of Unsupervised Learning Architecture for Gravity Spy
Dataset [2.8555963243398073]
Transient noise appearing in the data from gravitational-wave detectors frequently causes problems.
Because transient noise is considered to be associated with the environment and instrument, its classification would help to understand its origin and improve the detector's performance.
In a previous study, an architecture for classifying transient noise using a time-frequency 2D image (spectrogram) is proposed, which uses unsupervised deep learning combined with variational autoencoder and invariant information clustering.
The proposed unsupervised-learning architecture is applied to the Gravity Spy dataset, which consists of Advanced Laser Interferometer Gravitational-Wave Observatory (Advanced
arXiv Detail & Related papers (2022-08-07T02:51:36Z) - Unsupervised Learning Architecture for Classifying the Transient Noise
of Interferometric Gravitational-wave Detectors [2.8555963243398073]
transient noise with non-stationary and non-Gaussian features occurs at a high rate.
Classification of transient noise can offer clues for exploring its origin and improving the performance of the detector.
In this study, we propose an unsupervised learning architecture for the classification of transient noise.
arXiv Detail & Related papers (2021-11-19T05:37:06Z) - Canonical Polyadic Decomposition and Deep Learning for Machine Fault
Detection [0.0]
It is impossible to collect enough data to learn all types of faults from a machine.
New algorithms, trained using data from healthy conditions only, were developed to perform unsupervised anomaly detection.
A key issue in the development of these algorithms is the noise in the signals, as it impacts the anomaly detection performance.
arXiv Detail & Related papers (2021-07-20T14:06:50Z) - Real-time gravitational-wave science with neural posterior estimation [64.67121167063696]
We demonstrate unprecedented accuracy for rapid gravitational-wave parameter estimation with deep learning.
We analyze eight gravitational-wave events from the first LIGO-Virgo Gravitational-Wave Transient Catalog.
We find very close quantitative agreement with standard inference codes, but with inference times reduced from O(day) to a minute per event.
arXiv Detail & Related papers (2021-06-23T18:00:05Z) - TadGAN: Time Series Anomaly Detection Using Generative Adversarial
Networks [73.01104041298031]
TadGAN is an unsupervised anomaly detection approach built on Generative Adversarial Networks (GANs)
To capture the temporal correlations of time series, we use LSTM Recurrent Neural Networks as base models for Generators and Critics.
To demonstrate the performance and generalizability of our approach, we test several anomaly scoring techniques and report the best-suited one.
arXiv Detail & Related papers (2020-09-16T15:52:04Z) - Deep learning for gravitational-wave data analysis: A resampling
white-box approach [62.997667081978825]
We apply Convolutional Neural Networks (CNNs) to detect gravitational wave (GW) signals of compact binary coalescences, using single-interferometer data from LIGO detectors.
CNNs were quite precise to detect noise but not sensitive enough to recall GW signals, meaning that CNNs are better for noise reduction than generation of GW triggers.
arXiv Detail & Related papers (2020-09-09T03:28:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.