OZSpeech: One-step Zero-shot Speech Synthesis with Learned-Prior-Conditioned Flow Matching
- URL: http://arxiv.org/abs/2505.12800v1
- Date: Mon, 19 May 2025 07:31:55 GMT
- Title: OZSpeech: One-step Zero-shot Speech Synthesis with Learned-Prior-Conditioned Flow Matching
- Authors: Hieu-Nghia Huynh-Nguyen, Ngoc Son Nguyen, Huynh Nguyen Dang, Thieu Vo, Truong-Son Hy, Van Nguyen,
- Abstract summary: OZSpeech is the first TTS method to explore optimal transport conditional flow matching with one-step sampling.<n>Our approach operates on disentangled, factorized components of speech in token format, enabling accurate modeling of each speech attribute.<n> Experimental results show that our method achieves promising performance over existing methods in content accuracy, naturalness, prosody generation, and speaker style preservation.
- Score: 3.05024318465243
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Text-to-speech (TTS) systems have seen significant advancements in recent years, driven by improvements in deep learning and neural network architectures. Viewing the output speech as a data distribution, previous approaches often employ traditional speech representations, such as waveforms or spectrograms, within the Flow Matching framework. However, these methods have limitations, including overlooking various speech attributes and incurring high computational costs due to additional constraints introduced during training. To address these challenges, we introduce OZSpeech, the first TTS method to explore optimal transport conditional flow matching with one-step sampling and a learned prior as the condition, effectively disregarding preceding states and reducing the number of sampling steps. Our approach operates on disentangled, factorized components of speech in token format, enabling accurate modeling of each speech attribute, which enhances the TTS system's ability to precisely clone the prompt speech. Experimental results show that our method achieves promising performance over existing methods in content accuracy, naturalness, prosody generation, and speaker style preservation. Audio samples are available at our demo page https://ozspeech.github.io/OZSpeech_Web/.
Related papers
- ProsodyLM: Uncovering the Emerging Prosody Processing Capabilities in Speech Language Models [70.56468982313834]
We propose ProsodyLM, which introduces a simple tokenization scheme amenable to learning prosody.<n>We find that ProsodyLM can learn surprisingly diverse emerging prosody processing capabilities through pre-training alone.
arXiv Detail & Related papers (2025-07-27T00:59:01Z) - Towards Efficient Speech-Text Jointly Decoding within One Speech Language Model [76.06585781346601]
Speech language models (Speech LMs) enable end-to-end speech-text modelling within a single model.<n>The choice of speech-text jointly decoding paradigm plays a critical role in performance, efficiency, and alignment quality.
arXiv Detail & Related papers (2025-06-04T23:53:49Z) - InSerter: Speech Instruction Following with Unsupervised Interleaved Pre-training [23.330297074014315]
In this paper, we introduce a simple and scalable training method called InSerter, which stands for Interleaved Speech-Text Representation Pre-training.<n>InSerter is designed to pre-train large-scale unsupervised speech-text sequences, where the speech is synthesized from randomly selected segments of an extensive text corpus using text-to-speech conversion.<n>Our proposed InSerter achieves SOTA performance in SpeechInstructBench and demonstrates superior or competitive results across diverse speech processing tasks.
arXiv Detail & Related papers (2025-03-04T16:34:14Z) - Recent Advances in Speech Language Models: A Survey [45.968078636811356]
Speech Language Models (SpeechLMs) are end-to-end models that generate speech without converting from text.<n>This survey paper provides the first comprehensive overview of recent methodologies for constructing SpeechLMs.
arXiv Detail & Related papers (2024-10-01T21:48:12Z) - VQ-CTAP: Cross-Modal Fine-Grained Sequence Representation Learning for Speech Processing [81.32613443072441]
For tasks such as text-to-speech (TTS), voice conversion (VC), and automatic speech recognition (ASR), a cross-modal fine-grained (frame-level) sequence representation is desired.
We propose a method called Quantized Contrastive Token-Acoustic Pre-training (VQ-CTAP), which uses the cross-modal sequence transcoder to bring text and speech into a joint space.
arXiv Detail & Related papers (2024-08-11T12:24:23Z) - SpeechX: Neural Codec Language Model as a Versatile Speech Transformer [57.82364057872905]
SpeechX is a versatile speech generation model capable of zero-shot TTS and various speech transformation tasks.
Experimental results show SpeechX's efficacy in various tasks, including zero-shot TTS, noise suppression, target speaker extraction, speech removal, and speech editing with or without background noise.
arXiv Detail & Related papers (2023-08-14T01:01:19Z) - Zero-shot text-to-speech synthesis conditioned using self-supervised
speech representation model [13.572330725278066]
A novel point of the proposed method is the direct use of the SSL model to obtain embedding vectors from speech representations trained with a large amount of data.
The disentangled embeddings will enable us to achieve better reproduction performance for unseen speakers and rhythm transfer conditioned by different speeches.
arXiv Detail & Related papers (2023-04-24T10:15:58Z) - Any-speaker Adaptive Text-To-Speech Synthesis with Diffusion Models [65.28001444321465]
Grad-StyleSpeech is an any-speaker adaptive TTS framework based on a diffusion model.
It can generate highly natural speech with extremely high similarity to target speakers' voice, given a few seconds of reference speech.
It significantly outperforms speaker-adaptive TTS baselines on English benchmarks.
arXiv Detail & Related papers (2022-11-17T07:17:24Z) - TranSpeech: Speech-to-Speech Translation With Bilateral Perturbation [61.564874831498145]
TranSpeech is a speech-to-speech translation model with bilateral perturbation.
We establish a non-autoregressive S2ST technique, which repeatedly masks and predicts unit choices.
TranSpeech shows a significant improvement in inference latency, enabling speedup up to 21.4x than autoregressive technique.
arXiv Detail & Related papers (2022-05-25T06:34:14Z) - Direct speech-to-speech translation with discrete units [64.19830539866072]
We present a direct speech-to-speech translation (S2ST) model that translates speech from one language to speech in another language without relying on intermediate text generation.
We propose to predict the self-supervised discrete representations learned from an unlabeled speech corpus instead.
When target text transcripts are available, we design a multitask learning framework with joint speech and text training that enables the model to generate dual mode output (speech and text) simultaneously in the same inference pass.
arXiv Detail & Related papers (2021-07-12T17:40:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.