Diorama: Unleashing Zero-shot Single-view 3D Indoor Scene Modeling
- URL: http://arxiv.org/abs/2411.19492v2
- Date: Fri, 14 Mar 2025 22:54:30 GMT
- Title: Diorama: Unleashing Zero-shot Single-view 3D Indoor Scene Modeling
- Authors: Qirui Wu, Denys Iliash, Daniel Ritchie, Manolis Savva, Angel X. Chang,
- Abstract summary: We present Diorama, the first zero-shot open-world system that holistically models 3D scenes from single-view RGB observations.<n>We show the feasibility of our approach by decomposing the problem into subtasks and introduce robust, generalizable solutions to each.
- Score: 27.577720075952225
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reconstructing structured 3D scenes from RGB images using CAD objects unlocks efficient and compact scene representations that maintain compositionality and interactability. Existing works propose training-heavy methods relying on either expensive yet inaccurate real-world annotations or controllable yet monotonous synthetic data that do not generalize well to unseen objects or domains. We present Diorama, the first zero-shot open-world system that holistically models 3D scenes from single-view RGB observations without requiring end-to-end training or human annotations. We show the feasibility of our approach by decomposing the problem into subtasks and introduce robust, generalizable solutions to each: architecture reconstruction, 3D shape retrieval, object pose estimation, and scene layout optimization. We evaluate our system on both synthetic and real-world data to show we significantly outperform baselines from prior work. We also demonstrate generalization to internet images and the text-to-scene task.
Related papers
- Enhancing Monocular 3D Scene Completion with Diffusion Model [20.81599069390756]
3D scene reconstruction is essential for applications in virtual reality, robotics, and autonomous driving.
Traditional 3D Gaussian Splatting techniques rely on images captured from multiple viewpoints to achieve optimal performance.
We introduce FlashDreamer, a novel approach for reconstructing a complete 3D scene from a single image.
arXiv Detail & Related papers (2025-03-02T04:36:57Z) - Generalizable 3D Scene Reconstruction via Divide and Conquer from a Single View [5.222115919729418]
Single-view 3D reconstruction is currently approached from two dominant perspectives.
We propose a hybrid method following a divide-and-conquer strategy.
We first process the scene holistically, extracting depth and semantic information.
We then leverage a single-shot object-level method for the detailed reconstruction of individual components.
arXiv Detail & Related papers (2024-04-04T12:58:46Z) - Total-Decom: Decomposed 3D Scene Reconstruction with Minimal Interaction [51.3632308129838]
We present Total-Decom, a novel method for decomposed 3D reconstruction with minimal human interaction.
Our approach seamlessly integrates the Segment Anything Model (SAM) with hybrid implicit-explicit neural surface representations and a mesh-based region-growing technique for accurate 3D object decomposition.
We extensively evaluate our method on benchmark datasets and demonstrate its potential for downstream applications, such as animation and scene editing.
arXiv Detail & Related papers (2024-03-28T11:12:33Z) - Zero-Shot Multi-Object Scene Completion [59.325611678171974]
We present a 3D scene completion method that recovers the complete geometry of multiple unseen objects in complex scenes from a single RGB-D image.
Our method outperforms the current state-of-the-art on both synthetic and real-world datasets.
arXiv Detail & Related papers (2024-03-21T17:59:59Z) - Denoising Diffusion via Image-Based Rendering [54.20828696348574]
We introduce the first diffusion model able to perform fast, detailed reconstruction and generation of real-world 3D scenes.
First, we introduce a new neural scene representation, IB-planes, that can efficiently and accurately represent large 3D scenes.
Second, we propose a denoising-diffusion framework to learn a prior over this novel 3D scene representation, using only 2D images.
arXiv Detail & Related papers (2024-02-05T19:00:45Z) - Single-view 3D Scene Reconstruction with High-fidelity Shape and Texture [47.44029968307207]
We propose a novel framework for simultaneous high-fidelity recovery of object shapes and textures from single-view images.
Our approach utilizes the proposed Single-view neural implicit Shape and Radiance field (SSR) representations to leverage both explicit 3D shape supervision and volume rendering.
A distinctive feature of our framework is its ability to generate fine-grained textured meshes while seamlessly integrating rendering capabilities into the single-view 3D reconstruction model.
arXiv Detail & Related papers (2023-11-01T11:46:15Z) - Anything-3D: Towards Single-view Anything Reconstruction in the Wild [61.090129285205805]
We introduce Anything-3D, a methodical framework that ingeniously combines a series of visual-language models and the Segment-Anything object segmentation model.
Our approach employs a BLIP model to generate textural descriptions, utilize the Segment-Anything model for the effective extraction of objects of interest, and leverages a text-to-image diffusion model to lift object into a neural radiance field.
arXiv Detail & Related papers (2023-04-19T16:39:51Z) - SSR-2D: Semantic 3D Scene Reconstruction from 2D Images [54.46126685716471]
In this work, we explore a central 3D scene modeling task, namely, semantic scene reconstruction without using any 3D annotations.
The key idea of our approach is to design a trainable model that employs both incomplete 3D reconstructions and their corresponding source RGB-D images.
Our method achieves the state-of-the-art performance of semantic scene completion on two large-scale benchmark datasets MatterPort3D and ScanNet.
arXiv Detail & Related papers (2023-02-07T17:47:52Z) - Multiview Compressive Coding for 3D Reconstruction [77.95706553743626]
We introduce a simple framework that operates on 3D points of single objects or whole scenes.
Our model, Multiview Compressive Coding, learns to compress the input appearance and geometry to predict the 3D structure.
arXiv Detail & Related papers (2023-01-19T18:59:52Z) - Single-view 3D Mesh Reconstruction for Seen and Unseen Categories [69.29406107513621]
Single-view 3D Mesh Reconstruction is a fundamental computer vision task that aims at recovering 3D shapes from single-view RGB images.
This paper tackles Single-view 3D Mesh Reconstruction, to study the model generalization on unseen categories.
We propose an end-to-end two-stage network, GenMesh, to break the category boundaries in reconstruction.
arXiv Detail & Related papers (2022-08-04T14:13:35Z) - Weakly Supervised Learning of Multi-Object 3D Scene Decompositions Using
Deep Shape Priors [69.02332607843569]
PriSMONet is a novel approach for learning Multi-Object 3D scene decomposition and representations from single images.
A recurrent encoder regresses a latent representation of 3D shape, pose and texture of each object from an input RGB image.
We evaluate the accuracy of our model in inferring 3D scene layout, demonstrate its generative capabilities, assess its generalization to real images, and point out benefits of the learned representation.
arXiv Detail & Related papers (2020-10-08T14:49:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.