論文の概要: Graph-Enhanced EEG Foundation Model
- arxiv url: http://arxiv.org/abs/2411.19507v1
- Date: Fri, 29 Nov 2024 06:57:50 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-02 15:18:40.282872
- Title: Graph-Enhanced EEG Foundation Model
- Title(参考訳): グラフ強化脳波基礎モデル
- Authors: Limin Wang, Toyotaro Suzumura, Hiroki Kanezashi,
- Abstract要約: 本稿では,時間情報とチャネル間情報を統合した新しい脳波基盤モデルを提案する。
我々のアーキテクチャはグラフニューラルネットワーク(GNN)とマスク付きオートエンコーダを組み合わせることで,効率的な事前学習を実現する。
- 参考スコア(独自算出の注目度): 16.335330142000657
- License:
- Abstract: Electroencephalography (EEG) signals provide critical insights for applications in disease diagnosis and healthcare. However, the scarcity of labeled EEG data poses a significant challenge. Foundation models offer a promising solution by leveraging large-scale unlabeled data through pre-training, enabling strong performance across diverse tasks. While both temporal dynamics and inter-channel relationships are vital for understanding EEG signals, existing EEG foundation models primarily focus on the former, overlooking the latter. To address this limitation, we propose a novel foundation model for EEG that integrates both temporal and inter-channel information. Our architecture combines Graph Neural Networks (GNNs), which effectively capture relational structures, with a masked autoencoder to enable efficient pre-training. We evaluated our approach using three downstream tasks and experimented with various GNN architectures. The results demonstrate that our proposed model, particularly when employing the GCN architecture with optimized configurations, consistently outperformed baseline methods across all tasks. These findings suggest that our model serves as a robust foundation model for EEG analysis.
- Abstract(参考訳): 脳波(EEG)信号は、疾患の診断や医療への応用に重要な洞察を与える。
しかし、ラベル付きEEGデータの不足は大きな課題となる。
ファンデーションモデルは、事前トレーニングを通じて大規模な未ラベルデータを活用することで、有望なソリューションを提供する。
脳波信号を理解するには時間的ダイナミクスとチャネル間関係の両方が不可欠であるが、既存の脳波基礎モデルは後者を見渡すことに集中している。
この制限に対処するため,時間情報とチャネル間情報を統合した新しい脳波基盤モデルを提案する。
我々のアーキテクチャはグラフニューラルネットワーク(GNN)とマスク付きオートエンコーダを組み合わせることで,効率的な事前学習を実現する。
提案手法を3つの下流タスクを用いて評価し,様々なGNNアーキテクチャを実験した。
その結果,提案したモデル,特にGCNアーキテクチャを最適化した構成で採用する場合は,すべてのタスクのベースラインメソッドで一貫してパフォーマンスが向上することがわかった。
これらの結果から,脳波解析の基盤モデルとして,本モデルが有用であることが示唆された。
関連論文リスト
- Graph Adapter of EEG Foundation Models for Parameter Efficient Fine Tuning [1.8946099300030472]
EEG-GraphAdapter (EGA) はパラメータ効率の高い微細チューニング(PEFT)アプローチである。
EGAは、GNNベースのモジュールとして、事前訓練された時間バックボーンモデルに統合される。
バックボーンのBENDRモデルと比較すると、F1スコアでは最大16.1%の性能向上を実現している。
論文 参考訳(メタデータ) (2024-11-25T07:30:52Z) - EEGPT: Unleashing the Potential of EEG Generalist Foundation Model by Autoregressive Pre-training [9.57946371147345]
EEGPTはこれらの課題に対処するために設計された最初の一般のEEG基盤モデルである。
まず,各電極を基本単位として扱う電極ワイド・モデリング手法を提案する。
第2に、最初の自己回帰型脳波事前学習モデルを開発する。
第3に,学習可能な電極グラフネットワークを用いたマルチタスク転送学習パラダイムを提案する。
論文 参考訳(メタデータ) (2024-10-14T12:17:54Z) - Automated Fusion of Multimodal Electronic Health Records for Better
Medical Predictions [48.0590120095748]
本稿では,多様な入力モダリティと融合戦略を符号化する最適なモデルアーキテクチャを自動検索する,AutoFMという新しいニューラルネットワーク探索フレームワークを提案する。
我々は実世界のマルチモーダルEHRデータと予測タスクについて徹底的な実験を行い、その結果、我々のフレームワークが既存の最先端手法よりも大幅な性能向上を実現していることを示す。
論文 参考訳(メタデータ) (2024-01-20T15:14:14Z) - EEGFormer: Towards Transferable and Interpretable Large-Scale EEG
Foundation Model [39.363511340878624]
大規模複合脳波データに基づいて事前学習した脳波基礎モデル,すなわちEEGFormerを提案する。
本モデルの有効性を検証するため,様々な下流タスクにおいて広範囲に評価し,異なる転送条件下での性能を評価する。
論文 参考訳(メタデータ) (2024-01-11T17:36:24Z) - hvEEGNet: exploiting hierarchical VAEs on EEG data for neuroscience
applications [3.031375888004876]
脳波の既存のDLベースのモデリング手法に2つの課題がある。
被験者間の高いばらつきと低信号対雑音比は、脳波データの良好な品質を確保するのを困難にしている。
本稿では,高忠実度脳波再構成問題を対象とした2つの変分オートエンコーダモデル,すなわちvEEGNet-ver3とhvEEGNetを提案する。
論文 参考訳(メタデータ) (2023-11-20T15:36:31Z) - Neuro-GPT: Towards A Foundation Model for EEG [0.04188114563181615]
脳波エンコーダとGPTモデルからなる基礎モデルであるNeuro-GPTを提案する。
ファンデーションモデルは、マスクされたEEGセグメントの再構築方法を学ぶ自己教師付きタスクを使用して、大規模なデータセット上で事前訓練される。
基礎モデルを適用することで、スクラッチからトレーニングしたモデルと比較して、分類性能が大幅に向上することを示した。
論文 参考訳(メタデータ) (2023-11-07T07:07:18Z) - DGSD: Dynamical Graph Self-Distillation for EEG-Based Auditory Spatial
Attention Detection [49.196182908826565]
AAD(Auditory Attention Detection)は、マルチスピーカー環境で脳信号からターゲット話者を検出することを目的としている。
現在のアプローチは主に、画像のようなユークリッドデータを処理するために設計された従来の畳み込みニューラルネットワークに依存している。
本稿では、入力として音声刺激を必要としないAADのための動的グラフ自己蒸留(DGSD)手法を提案する。
論文 参考訳(メタデータ) (2023-09-07T13:43:46Z) - Challenging the Myth of Graph Collaborative Filtering: a Reasoned and Reproducibility-driven Analysis [50.972595036856035]
本稿では,6つの人気グラフと最近のグラフ推薦モデルの結果を再現するコードを提案する。
これらのグラフモデルと従来の協調フィルタリングモデルを比較する。
ユーザの近所からの情報フローを調べることにより,データセット構造における内在的特徴にどのようなモデルが影響するかを同定することを目的とする。
論文 参考訳(メタデータ) (2023-08-01T09:31:44Z) - Geometric Deep Learning for Structure-Based Drug Design: A Survey [83.87489798671155]
構造に基づく薬物設計(SBDD)は、タンパク質の3次元幾何学を利用して、潜在的な薬物候補を特定する。
近年の幾何学的深層学習の進歩は、3次元幾何学的データを効果的に統合・処理し、この分野を前進させてきた。
論文 参考訳(メタデータ) (2023-06-20T14:21:58Z) - Uncovering the structure of clinical EEG signals with self-supervised
learning [64.4754948595556]
教師付き学習パラダイムは、しばしば利用可能なラベル付きデータの量によって制限される。
この現象は脳波(EEG)などの臨床関連データに特に問題となる。
ラベルのないデータから情報を抽出することで、ディープニューラルネットワークとの競合性能に到達することができるかもしれない。
論文 参考訳(メタデータ) (2020-07-31T14:34:47Z) - ECG-DelNet: Delineation of Ambulatory Electrocardiograms with Mixed
Quality Labeling Using Neural Networks [69.25956542388653]
ディープラーニング(DL)アルゴリズムは、学術的、産業的にも重くなっている。
セグメンテーションフレームワークにECGの検出とデライン化を組み込むことにより、低解釈タスクにDLをうまく適用できることを実証する。
このモデルは、PhyloNetのQTデータベースを使用して、105個の増幅ECG記録から訓練された。
論文 参考訳(メタデータ) (2020-05-11T16:29:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。