論文の概要: Solving Rubik's Cube Without Tricky Sampling
- arxiv url: http://arxiv.org/abs/2411.19583v1
- Date: Fri, 29 Nov 2024 09:56:40 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-02 15:22:04.424573
- Title: Solving Rubik's Cube Without Tricky Sampling
- Title(参考訳): トリッキーサンプリングなしでルービックキューブを解く
- Authors: Yicheng Lin, Siyu Liang,
- Abstract要約: ルービックキューブはその広大な州空間とまばらな報酬構造を持ち、強化学習にとって重要な課題である。
従来の研究では、解決された状態からコスト・ツー・ゴーの見積を伝播し、探索手法を取り入れることによって、この問題に対処していた。
本稿では, ポリシ勾配法を用いて, ほぼ解決状態サンプリングに依存することなく, ルービックキューブを解く新しいRLアルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 0.6445605125467574
- License:
- Abstract: The Rubiks Cube, with its vast state space and sparse reward structure, presents a significant challenge for reinforcement learning (RL) due to the difficulty of reaching rewarded states. Previous research addressed this by propagating cost-to-go estimates from the solved state and incorporating search techniques. These approaches differ from human strategies that start from fully scrambled cubes, which can be tricky for solving a general sparse-reward problem. In this paper, we introduce a novel RL algorithm using policy gradient methods to solve the Rubiks Cube without relying on near solved-state sampling. Our approach employs a neural network to predict cost patterns between states, allowing the agent to learn directly from scrambled states. Our method was tested on the 2x2x2 Rubiks Cube, where the cube was scrambled 50,000 times, and the model successfully solved it in over 99.4% of cases. Notably, this result was achieved using only the policy network without relying on tree search as in previous methods, demonstrating its effectiveness and potential for broader applications in sparse-reward problems.
- Abstract(参考訳): ルービックキューブはその広大な状態空間とまばらな報酬構造を持ち、報酬状態に到達するのが困難であるため、強化学習(RL)にとって重要な課題である。
従来の研究では、解決された状態からコスト・ツー・ゴーの見積を伝播し、探索手法を取り入れることによって、この問題に対処していた。
これらのアプローチは、完全にスクランブルされた立方体から始まる人間の戦略とは異なる。
本稿では,ルービックキューブを近似状態サンプリングに頼らずに解くためにポリシー勾配法を用いた新しいRLアルゴリズムを提案する。
このアプローチでは、ニューラルネットワークを使用して状態間のコストパターンを予測し、エージェントがスクランブル状態から直接学習することができる。
我々の手法は2x2x2ルービックキューブで試験され、立方体は5万回スクランブルされ、99.4%のケースで解かれた。
この結果は,従来の手法のように木探索に頼らずにポリシネットワークのみを用いて達成され,疎逆問題におけるより広範な応用の可能性を示した。
関連論文リスト
- Solving a Rubik's Cube Using its Local Graph Structure [13.219469732742354]
ルービックスキューブには6つの面と12の可能なアクションがあり、小さくて制約のないアクション空間に繋がる。
ルービックスキューブはグラフとして表すことができ、立方体の状態はノードであり、作用はエッジである。
グラフ畳み込みネットワークに基づいて、スクランブルされたルービックスキューブの解を見つけるための新しい探索アルゴリズムを設計する。
論文 参考訳(メタデータ) (2024-08-15T05:39:52Z) - A Novel Normalized-Cut Solver with Nearest Neighbor Hierarchical
Initialization [107.07093621337084]
正規化カット(N-Cut)は、スペクトルクラスタリングの有名なモデルである。
1)正規化ラプラシア行列の連続スペクトル埋め込みを計算する; 2)$K$-meansまたはスペクトル回転による離散化。
有名な座標降下法に基づく新しいN-Cut解法を提案する。
論文 参考訳(メタデータ) (2023-11-26T07:11:58Z) - Polynomial-Time Solutions for ReLU Network Training: A Complexity
Classification via Max-Cut and Zonotopes [70.52097560486683]
我々は、ReLUネットワークの近似の難しさがマックス・カッツ問題の複雑さを反映しているだけでなく、特定の場合において、それと完全に一致することを証明した。
特に、$epsilonleqsqrt84/83-1approx 0.006$とすると、目的値に関して相対誤差$epsilon$でReLUネットワーク対象の近似グローバルデータセットを見つけることはNPハードであることが示される。
論文 参考訳(メタデータ) (2023-11-18T04:41:07Z) - On Solving the Rubik's Cube with Domain-Independent Planners Using
Standard Representations [7.470087627607195]
本稿では,人気のあるPDDL言語における最初のルービックキューブ表現について述べる。
1つの比較実験で、DeepCubeAは様々な複雑さを持つ全ての問題を解き、78.5%しか最適計画ではないことがわかった。
我々の研究は、表現的選択と計画最適性の間のトレードオフに関する貴重な洞察を提供する。
論文 参考訳(メタデータ) (2023-07-25T14:52:23Z) - Learning To Dive In Branch And Bound [95.13209326119153]
グラフニューラルネットワークを用いて特定の潜水構造を学習するためのL2Diveを提案する。
我々は、変数の割り当てを予測するために生成モデルを訓練し、線形プログラムの双対性を利用して潜水決定を行う。
論文 参考訳(メタデータ) (2023-01-24T12:01:45Z) - TCT: Convexifying Federated Learning using Bootstrapped Neural Tangent
Kernels [141.29156234353133]
最先端の凸学習手法は、クライアントが異なるデータ分布を持つ場合、集中型よりもはるかにパフォーマンスが劣る。
我々は、この格差は、非NISTityが提示した課題に大きく起因していることを示す。
本稿では,Train-Convexify Neural Network (TCT) 手法を提案する。
論文 参考訳(メタデータ) (2022-07-13T16:58:22Z) - CubeTR: Learning to Solve The Rubiks Cube Using Transformers [0.0]
ルービックス立方体は、可能な構成の五重項に対して単一の解状態を持ち、非常にスパースな報酬をもたらす。
提案モデルであるCubeTRは、より長いアクションシーケンスに参加し、スパース報酬の問題に対処する。
論文 参考訳(メタデータ) (2021-11-11T03:17:28Z) - Efficiently Learning Any One Hidden Layer ReLU Network From Queries [27.428198343906352]
ネットワークへのブラックボックスアクセスを提供するニューラルネットワークアクティベーションを任意の1つの隠蔽層で学習するアルゴリズムを初めて提供する。
最悪のネットワークであっても、完全時間で効率を保証できるのはこれが初めてです。
論文 参考訳(メタデータ) (2021-11-08T18:59:40Z) - Randomized Exploration for Reinforcement Learning with General Value
Function Approximation [122.70803181751135]
本稿では,ランダム化最小二乗値反復(RLSVI)アルゴリズムに着想を得たモデルレス強化学習アルゴリズムを提案する。
提案アルゴリズムは,スカラーノイズを用いたトレーニングデータを簡易に摂動させることにより,探索を促進する。
我々はこの理論を、既知の困難な探査課題にまたがる実証的な評価で補完する。
論文 参考訳(メタデータ) (2021-06-15T02:23:07Z) - Self-Supervision is All You Need for Solving Rubik's Cube [0.0]
この研究は、ルービックキューブで表される、あらかじめ定義されたゴールで問題を解決するためのシンプルで効率的なディープラーニング手法を導入する。
このような問題に対して、目標状態から分岐するランダムスクランブル上でディープニューラルネットワークをトレーニングすることは、ほぼ最適解を達成するのに十分であることを示す。
論文 参考訳(メタデータ) (2021-06-06T15:38:50Z) - Sanity-Checking Pruning Methods: Random Tickets can Win the Jackpot [55.37967301483917]
従来のプルーニングアルゴリズムの知恵は、プルーニング手法がトレーニングデータから情報を利用して良い作品を見つけることを示唆している。
本稿では,近年の非構造的刈り取り法について,上記の信念の正当性チェックを行う。
本稿では,各層に対して単純なデータに依存しないプーン比を提案し,サブネットワークを得るために各層をランダムにプーンする。
論文 参考訳(メタデータ) (2020-09-22T17:36:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。