論文の概要: Uniform Attention Maps: Boosting Image Fidelity in Reconstruction and Editing
- arxiv url: http://arxiv.org/abs/2411.19652v1
- Date: Fri, 29 Nov 2024 12:11:28 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-02 15:22:51.158414
- Title: Uniform Attention Maps: Boosting Image Fidelity in Reconstruction and Editing
- Title(参考訳): 統一アテンションマップ:再構築と編集におけるイメージ忠実度向上
- Authors: Wenyi Mo, Tianyu Zhang, Yalong Bai, Bing Su, Ji-Rong Wen,
- Abstract要約: 構造的視点から再構築を解析し、従来の横断的注意を一様注意マップに置き換える新しいアプローチを提案する。
本手法は,ノイズ予測時のテキスト条件の変化による歪みを効果的に抑制する。
実験結果から,本手法は高忠実度画像再構成に優れるだけでなく,実際の画像合成や編集のシナリオにも頑健に機能することが示された。
- 参考スコア(独自算出の注目度): 66.48853049746123
- License:
- Abstract: Text-guided image generation and editing using diffusion models have achieved remarkable advancements. Among these, tuning-free methods have gained attention for their ability to perform edits without extensive model adjustments, offering simplicity and efficiency. However, existing tuning-free approaches often struggle with balancing fidelity and editing precision. Reconstruction errors in DDIM Inversion are partly attributed to the cross-attention mechanism in U-Net, which introduces misalignments during the inversion and reconstruction process. To address this, we analyze reconstruction from a structural perspective and propose a novel approach that replaces traditional cross-attention with uniform attention maps, significantly enhancing image reconstruction fidelity. Our method effectively minimizes distortions caused by varying text conditions during noise prediction. To complement this improvement, we introduce an adaptive mask-guided editing technique that integrates seamlessly with our reconstruction approach, ensuring consistency and accuracy in editing tasks. Experimental results demonstrate that our approach not only excels in achieving high-fidelity image reconstruction but also performs robustly in real image composition and editing scenarios. This study underscores the potential of uniform attention maps to enhance the fidelity and versatility of diffusion-based image processing methods. Code is available at https://github.com/Mowenyii/Uniform-Attention-Maps.
- Abstract(参考訳): 拡散モデルを用いたテキスト誘導画像生成と編集は、目覚ましい進歩を遂げた。
これらのうち、チューニング不要な手法は、広範囲なモデル調整なしに編集を行う能力に注目され、単純さと効率性を提供している。
しかし、既存のチューニング不要なアプローチは、忠実さと編集精度のバランスにしばしば苦労する。
DDIMインバージョンにおける再構成誤差は、部分的には、インバージョンとリバージョンプロセスにおける誤アライメントをもたらすU-Netのクロスアテンション機構に起因している。
そこで我々は,構造的視点から再構築を解析し,従来の横断的意識を一様注意マップに置き換え,画像再構成の忠実度を大幅に向上させる手法を提案する。
本手法は,ノイズ予測時のテキスト条件の変化による歪みを効果的に抑制する。
この改善を補完するために、我々は、再構築アプローチとシームレスに統合し、編集作業における一貫性と精度を確保する適応マスク誘導編集技術を導入する。
実験結果から,本手法は高忠実度画像再構成に優れるだけでなく,実際の画像合成や編集のシナリオにも頑健に機能することが示された。
本研究では,拡散に基づく画像処理手法の忠実度と汎用性を高めるため,一様注意マップの可能性を明らかにする。
コードはhttps://github.com/Mowenyii/Uniform-Attention-Mapsで入手できる。
関連論文リスト
- Guide-and-Rescale: Self-Guidance Mechanism for Effective Tuning-Free Real Image Editing [42.73883397041092]
本稿では,誘導機構による拡散サンプリングプロセスの修正に基づく新しい手法を提案する。
本研究では,入力画像の全体構造を保存するための自己誘導手法について検討する。
本稿では,人間の評価と定量的分析を通じて,提案手法が望ましい編集を可能にすることを示す。
論文 参考訳(メタデータ) (2024-09-02T15:21:46Z) - Task-Oriented Diffusion Inversion for High-Fidelity Text-based Editing [60.730661748555214]
textbfTask-textbfOriented textbfDiffusion textbfInversion (textbfTODInv) は、特定の編集タスクに適した実際の画像を反転して編集する新しいフレームワークである。
ToDInvは相互最適化によってインバージョンと編集をシームレスに統合し、高い忠実さと正確な編集性を保証する。
論文 参考訳(メタデータ) (2024-08-23T22:16:34Z) - TurboEdit: Text-Based Image Editing Using Few-Step Diffusion Models [53.757752110493215]
テキストベースの一般的な編集フレームワーク – 編集フレンドリーなDDPM-noiseインバージョンアプローチ – に注目します。
高速サンプリング法への適用を解析し、その失敗を視覚的アーティファクトの出現と編集強度の不足という2つのクラスに分類する。
そこで我々は,新しいアーティファクトを導入することなく,効率よく編集の規模を拡大する疑似誘導手法を提案する。
論文 参考訳(メタデータ) (2024-08-01T17:27:28Z) - ReNoise: Real Image Inversion Through Iterative Noising [62.96073631599749]
本研究では,操作数を増やすことなく,高い品質と操作率の逆転法を導入し,再現精度を向上する。
我々は,近年の高速化拡散モデルを含む様々なサンプリングアルゴリズムとモデルを用いて,Renoise手法の性能を評価する。
論文 参考訳(メタデータ) (2024-03-21T17:52:08Z) - High-Fidelity Diffusion-based Image Editing [19.85446433564999]
拡散モデルの編集性能は、デノナイジングステップが増加しても、もはや満足できない傾向にある。
本稿では,マルコフ加群が残差特徴を持つ拡散モデル重みを変調するために組み込まれている革新的なフレームワークを提案する。
本稿では,編集過程における誤り伝播の最小化を目的とした新しい学習パラダイムを提案する。
論文 参考訳(メタデータ) (2023-12-25T12:12:36Z) - Tuning-Free Inversion-Enhanced Control for Consistent Image Editing [44.311286151669464]
我々は、チューニング不要なインバージョン強化制御(TIC)と呼ばれる新しいアプローチを提案する。
TICは、インバージョンプロセスとサンプリングプロセスの特徴を相関付け、DDIM再構成の不整合を軽減する。
また、インバージョンと単純なDDIM編集プロセスの両方の内容を組み合わせたマスク誘導型アテンション結合戦略を提案する。
論文 参考訳(メタデータ) (2023-12-22T11:13:22Z) - Steerable Conditional Diffusion for Out-of-Distribution Adaptation in Medical Image Reconstruction [75.91471250967703]
我々は、ステアブル条件拡散と呼ばれる新しいサンプリングフレームワークを導入する。
このフレームワークは、利用可能な測定によって提供される情報のみに基づいて、画像再構成と並行して拡散モデルを適用する。
様々な画像モダリティにまたがるアウト・オブ・ディストリビューション性能の大幅な向上を実現した。
論文 参考訳(メタデータ) (2023-08-28T08:47:06Z) - Improving Tuning-Free Real Image Editing with Proximal Guidance [21.070356480624397]
Null-text Inversion (NTI) はヌル埋め込みを最適化し、再構成とインバージョン軌道をより大きなCFGスケールと整合させる。
NPIは、NTIのトレーニング不要なクローズドフォームソリューションを提供するが、アーティファクトを導入し、DDIMの再構築品質に制約されている。
我々は、相互の自己注意制御を組み込むために概念を拡張し、編集プロセスにおける幾何学的・レイアウト的変更を可能にする。
論文 参考訳(メタデータ) (2023-06-08T17:57:18Z) - ReGANIE: Rectifying GAN Inversion Errors for Accurate Real Image Editing [20.39792009151017]
StyleGANは、セマンティックリッチな潜在スタイル空間を操作することで、生成した画像の柔軟で妥当な編集を可能にする。
実際の画像をその潜在空間に投影することは、反転品質と編集性の間に固有のトレードオフに遭遇する。
本稿では,2つの異なるネットワークをそれぞれ編集と再構築に用い,新しい2段階のフレームワークを提案する。
論文 参考訳(メタデータ) (2023-01-31T04:38:42Z) - High-Fidelity GAN Inversion for Image Attribute Editing [61.966946442222735]
本稿では,画像固有の詳細をよく保存した属性編集を可能にする,GAN(High-fidelity Generative Adversarial Network)インバージョンフレームワークを提案する。
低ビットレートの遅延符号では、再構成された画像や編集された画像の高忠実度の詳細を保存することは困難である。
高忠実度復元のための基準として歪みマップを用いる歪みコンサルテーション手法を提案する。
論文 参考訳(メタデータ) (2021-09-14T11:23:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。