Multimodal Whole Slide Foundation Model for Pathology
- URL: http://arxiv.org/abs/2411.19666v1
- Date: Fri, 29 Nov 2024 12:39:57 GMT
- Title: Multimodal Whole Slide Foundation Model for Pathology
- Authors: Tong Ding, Sophia J. Wagner, Andrew H. Song, Richard J. Chen, Ming Y. Lu, Andrew Zhang, Anurag J. Vaidya, Guillaume Jaume, Muhammad Shaban, Ahrong Kim, Drew F. K. Williamson, Bowen Chen, Cristina Almagro-Perez, Paul Doucet, Sharifa Sahai, Chengkuan Chen, Daisuke Komura, Akihiro Kawabe, Shumpei Ishikawa, Georg Gerber, Tingying Peng, Long Phi Le, Faisal Mahmood,
- Abstract summary: We propose TITAN, a whole slide foundation model pretrained using visual self-supervised learning and vision-language alignment with pathology reports.
T TITAN can extract general-purpose slide representations and generate pathology reports that generalize to resource-limited clinical scenarios.
- Score: 9.46103337205135
- License:
- Abstract: The field of computational pathology has been transformed with recent advances in foundation models that encode histopathology region-of-interests (ROIs) into versatile and transferable feature representations via self-supervised learning (SSL). However, translating these advancements to address complex clinical challenges at the patient and slide level remains constrained by limited clinical data in disease-specific cohorts, especially for rare clinical conditions. We propose TITAN, a multimodal whole slide foundation model pretrained using 335,645 WSIs via visual self-supervised learning and vision-language alignment with corresponding pathology reports and 423,122 synthetic captions generated from a multimodal generative AI copilot for pathology. Without any finetuning or requiring clinical labels, TITAN can extract general-purpose slide representations and generate pathology reports that generalize to resource-limited clinical scenarios such as rare disease retrieval and cancer prognosis. We evaluate TITAN on diverse clinical tasks and find that TITAN outperforms both ROI and slide foundation models across machine learning settings such as linear probing, few-shot and zero-shot classification, rare cancer retrieval and cross-modal retrieval, and pathology report generation.
Related papers
- Clinical-grade Multi-Organ Pathology Report Generation for Multi-scale Whole Slide Images via a Semantically Guided Medical Text Foundation Model [3.356716093747221]
We propose a novel Patient-level Multi-organ Pathology Report Generation (PMPRG) model to generate pathology reports for patients.
Our model achieved a METEOR score of 0.68, demonstrating the effectiveness of our approach.
arXiv Detail & Related papers (2024-09-23T22:22:32Z) - PathInsight: Instruction Tuning of Multimodal Datasets and Models for Intelligence Assisted Diagnosis in Histopathology [7.87900104748629]
We have meticulously compiled a dataset of approximately 45,000 cases, covering over 6 different tasks.
We have fine-tuned multimodal large models, specifically LLaVA, Qwen-VL, InternLM, with this dataset to enhance instruction-based performance.
arXiv Detail & Related papers (2024-08-13T17:05:06Z) - Potential of Multimodal Large Language Models for Data Mining of Medical Images and Free-text Reports [51.45762396192655]
Multimodal large language models (MLLMs) have recently transformed many domains, significantly affecting the medical field. Notably, Gemini-Vision-series (Gemini) and GPT-4-series (GPT-4) models have epitomized a paradigm shift in Artificial General Intelligence for computer vision.
This study evaluated the performance of the Gemini, GPT-4, and 4 popular large models for an exhaustive evaluation across 14 medical imaging datasets.
arXiv Detail & Related papers (2024-07-08T09:08:42Z) - RET-CLIP: A Retinal Image Foundation Model Pre-trained with Clinical Diagnostic Reports [19.915033191502328]
The Vision-Language Foundation model is increasingly investigated in the fields of computer vision and natural language processing.
To handle this issue, a CLIP-style retinal image foundation model is developed in this paper.
Our foundation model, RET-CLIP, is specifically trained on a dataset of 193,865 patients to extract general features of color fundus photographs.
arXiv Detail & Related papers (2024-05-23T03:20:51Z) - A Transformer-based representation-learning model with unified
processing of multimodal input for clinical diagnostics [63.106382317917344]
We report a Transformer-based representation-learning model as a clinical diagnostic aid that processes multimodal input in a unified manner.
The unified model outperformed an image-only model and non-unified multimodal diagnosis models in the identification of pulmonary diseases.
arXiv Detail & Related papers (2023-06-01T16:23:47Z) - PathAsst: A Generative Foundation AI Assistant Towards Artificial
General Intelligence of Pathology [15.419350834457136]
We present PathAsst, a multimodal generative foundation AI assistant to revolutionize diagnostic and predictive analytics in pathology.
The development of PathAsst involves three pivotal steps: data acquisition, CLIP model adaptation, and the training of PathAsst's multimodal generative capabilities.
The experimental results of PathAsst show the potential of harnessing AI-powered generative foundation model to improve pathology diagnosis and treatment processes.
arXiv Detail & Related papers (2023-05-24T11:55:50Z) - PathologyBERT -- Pre-trained Vs. A New Transformer Language Model for
Pathology Domain [2.3628956573813498]
Successful text mining of a large pathology database can play a critical role to advance 'big data' cancer research.
No pathology-specific language space exist to support the rapid data-mining development in pathology space.
PathologyBERT is a pre-trained masked language model which was trained on 347,173 histopathology specimen reports.
arXiv Detail & Related papers (2022-05-13T20:42:07Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
We focus on few-shot disease subtype prediction problem, identifying subgroups of similar patients.
We introduce meta learning techniques to develop a new model, which can extract the common experience or knowledge from interrelated clinical tasks.
Our new model is built upon a carefully designed meta-learner, called Prototypical Network, that is a simple yet effective meta learning machine for few-shot image classification.
arXiv Detail & Related papers (2020-09-02T02:50:30Z) - Trajectories, bifurcations and pseudotime in large clinical datasets:
applications to myocardial infarction and diabetes data [94.37521840642141]
We suggest a semi-supervised methodology for the analysis of large clinical datasets, characterized by mixed data types and missing values.
The methodology is based on application of elastic principal graphs which can address simultaneously the tasks of dimensionality reduction, data visualization, clustering, feature selection and quantifying the geodesic distances (pseudotime) in partially ordered sequences of observations.
arXiv Detail & Related papers (2020-07-07T21:04:55Z) - Co-Heterogeneous and Adaptive Segmentation from Multi-Source and
Multi-Phase CT Imaging Data: A Study on Pathological Liver and Lesion
Segmentation [48.504790189796836]
We present a novel segmentation strategy, co-heterogenous and adaptive segmentation (CHASe)
We propose a versatile framework that fuses appearance based semi-supervision, mask based adversarial domain adaptation, and pseudo-labeling.
CHASe can further improve pathological liver mask Dice-Sorensen coefficients by ranges of $4.2% sim 9.4%$.
arXiv Detail & Related papers (2020-05-27T06:58:39Z) - Weakly supervised multiple instance learning histopathological tumor
segmentation [51.085268272912415]
We propose a weakly supervised framework for whole slide imaging segmentation.
We exploit a multiple instance learning scheme for training models.
The proposed framework has been evaluated on multi-locations and multi-centric public data from The Cancer Genome Atlas and the PatchCamelyon dataset.
arXiv Detail & Related papers (2020-04-10T13:12:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.