Relative Representations of Latent Spaces enable Efficient Semantic Channel Equalization
- URL: http://arxiv.org/abs/2411.19719v1
- Date: Fri, 29 Nov 2024 14:08:48 GMT
- Title: Relative Representations of Latent Spaces enable Efficient Semantic Channel Equalization
- Authors: Tomás Hüttebräucker, Simone Fiorellino, Mohamed Sana, Paolo Di Lorenzo, Emilio Calvanese Strinati,
- Abstract summary: We present a novel semantic equalization algorithm that enables communication between agents with different languages without additional retraining.
Our numerical results show the effectiveness of the proposed approach allowing seamless communication between agents with radically different models.
- Score: 11.052047963214006
- License:
- Abstract: In multi-user semantic communication, language mismatche poses a significant challenge when independently trained agents interact. We present a novel semantic equalization algorithm that enables communication between agents with different languages without additional retraining. Our algorithm is based on relative representations, a framework that enables different agents employing different neural network models to have unified representation. It proceeds by projecting the latent vectors of different models into a common space defined relative to a set of data samples called \textit{anchors}, whose number equals the dimension of the resulting space. A communication between different agents translates to a communication of semantic symbols sampled from this relative space. This approach, in addition to aligning the semantic representations of different agents, allows compressing the amount of information being exchanged, by appropriately selecting the number of anchors. Eventually, we introduce a novel anchor selection strategy, which advantageously determines prototypical anchors, capturing the most relevant information for the downstream task. Our numerical results show the effectiveness of the proposed approach allowing seamless communication between agents with radically different models, including differences in terms of neural network architecture and datasets used for initial training.
Related papers
- Encoding Agent Trajectories as Representations with Sequence Transformers [0.4999814847776097]
We propose a model for representing high dimensional trajectories with neural-based network architecture.
Similar to language models, our Transformer Sequence for Agent temporal Representations (STARE) model can learn representations and structure in trajectory data.
We present experimental results on various synthetic and real trajectory datasets and show that our proposed model can learn meaningful encodings.
arXiv Detail & Related papers (2024-10-11T19:18:47Z) - Latent Space Alignment for Semantic Channel Equalization [3.266331042379877]
We relax the constraint of a shared language between agents in a semantic and goal-oriented communication system.
We propose a mathematical framework, which provides a modelling and a measure of the semantic distortion introduced in the communication when agents use distinct languages.
arXiv Detail & Related papers (2024-05-22T10:12:32Z) - Spatial Semantic Recurrent Mining for Referring Image Segmentation [63.34997546393106]
We propose Stextsuperscript2RM to achieve high-quality cross-modality fusion.
It follows a working strategy of trilogy: distributing language feature, spatial semantic recurrent coparsing, and parsed-semantic balancing.
Our proposed method performs favorably against other state-of-the-art algorithms.
arXiv Detail & Related papers (2024-05-15T00:17:48Z) - Investigating semantic subspaces of Transformer sentence embeddings
through linear structural probing [2.5002227227256864]
We present experiments with semantic structural probing, a method for studying sentence-level representations.
We apply our method to language models from different families (encoder-only, decoder-only, encoder-decoder) and of different sizes in the context of two tasks.
We find that model families differ substantially in their performance and layer dynamics, but that the results are largely model-size invariant.
arXiv Detail & Related papers (2023-10-18T12:32:07Z) - mCL-NER: Cross-Lingual Named Entity Recognition via Multi-view
Contrastive Learning [54.523172171533645]
Cross-lingual named entity recognition (CrossNER) faces challenges stemming from uneven performance due to the scarcity of multilingual corpora.
We propose Multi-view Contrastive Learning for Cross-lingual Named Entity Recognition (mCL-NER)
Our experiments on the XTREME benchmark, spanning 40 languages, demonstrate the superiority of mCL-NER over prior data-driven and model-based approaches.
arXiv Detail & Related papers (2023-08-17T16:02:29Z) - Relative representations enable zero-shot latent space communication [19.144630518400604]
Neural networks embed the geometric structure of a data manifold lying in a high-dimensional space into latent representations.
We show how neural architectures can leverage these relative representations to guarantee, in practice, latent isometry invariance.
arXiv Detail & Related papers (2022-09-30T12:37:03Z) - Preliminary study on using vector quantization latent spaces for TTS/VC
systems with consistent performance [55.10864476206503]
We investigate the use of quantized vectors to model the latent linguistic embedding.
By enforcing different policies over the latent spaces in the training, we are able to obtain a latent linguistic embedding.
Our experiments show that the voice cloning system built with vector quantization has only a small degradation in terms of perceptive evaluations.
arXiv Detail & Related papers (2021-06-25T07:51:35Z) - Cross-Modal Discrete Representation Learning [73.68393416984618]
We present a self-supervised learning framework that learns a representation that captures finer levels of granularity across different modalities.
Our framework relies on a discretized embedding space created via vector quantization that is shared across different modalities.
arXiv Detail & Related papers (2021-06-10T00:23:33Z) - Towards Heterogeneous Multi-Agent Reinforcement Learning with Graph
Neural Networks [1.370633147306388]
This work proposes a neural network architecture that learns policies for multiple agent classes in a heterogeneous multi-agent reinforcement setting.
Results have shown that specializing the communication channels between entity classes is a promising step to achieve higher performance in environments composed of heterogeneous entities.
arXiv Detail & Related papers (2020-09-28T09:15:04Z) - Multidirectional Associative Optimization of Function-Specific Word
Representations [86.87082468226387]
We present a neural framework for learning associations between interrelated groups of words.
Our model induces a joint function-specific word vector space, where vectors of e.g. plausible SVO compositions lie close together.
The model retains information about word group membership even in the joint space, and can thereby effectively be applied to a number of tasks reasoning over the SVO structure.
arXiv Detail & Related papers (2020-05-11T17:07:20Z) - Improve Variational Autoencoder for Text Generationwith Discrete Latent
Bottleneck [52.08901549360262]
Variational autoencoders (VAEs) are essential tools in end-to-end representation learning.
VAEs tend to ignore latent variables with a strong auto-regressive decoder.
We propose a principled approach to enforce an implicit latent feature matching in a more compact latent space.
arXiv Detail & Related papers (2020-04-22T14:41:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.