JetFormer: An Autoregressive Generative Model of Raw Images and Text
- URL: http://arxiv.org/abs/2411.19722v1
- Date: Fri, 29 Nov 2024 14:14:59 GMT
- Title: JetFormer: An Autoregressive Generative Model of Raw Images and Text
- Authors: Michael Tschannen, André Susano Pinto, Alexander Kolesnikov,
- Abstract summary: We propose an autoregressive decoder-only transformer - JetFormer - which is trained to directly maximize the likelihood of raw data.
We leverage a normalizing flow model to obtain a soft-token image representation that is jointly trained with an autoregressive multimodal transformer.
JetFormer achieves text-to-image generation quality competitive with recent VQ-VAE- and VAE-based baselines.
- Score: 62.2573739835562
- License:
- Abstract: Removing modeling constraints and unifying architectures across domains has been a key driver of the recent progress in training large multimodal models. However, most of these models still rely on many separately trained components such as modality-specific encoders and decoders. In this work, we further streamline joint generative modeling of images and text. We propose an autoregressive decoder-only transformer - JetFormer - which is trained to directly maximize the likelihood of raw data, without relying on any separately pretrained components, and can understand and generate both text and images. Specifically, we leverage a normalizing flow model to obtain a soft-token image representation that is jointly trained with an autoregressive multimodal transformer. The normalizing flow model serves as both an image encoder for perception tasks and an image decoder for image generation tasks during inference. JetFormer achieves text-to-image generation quality competitive with recent VQ-VAE- and VAE-based baselines. These baselines rely on pretrained image autoencoders, which are trained with a complex mixture of losses, including perceptual ones. At the same time, JetFormer demonstrates robust image understanding capabilities. To the best of our knowledge, JetFormer is the first model that is capable of generating high-fidelity images and producing strong log-likelihood bounds.
Related papers
- Decoder-Only LLMs are Better Controllers for Diffusion Models [63.22040456010123]
We propose to enhance text-to-image diffusion models by borrowing the strength of semantic understanding from large language models.
Our adapter module is superior to the stat-of-the-art models in terms of text-to-image generation quality and reliability.
arXiv Detail & Related papers (2025-02-06T12:17:35Z) - WavePaint: Resource-efficient Token-mixer for Self-supervised Inpainting [2.3014300466616078]
This paper diverges from vision transformers by using a computationally-efficient WaveMix-based fully convolutional architecture -- WavePaint.
It uses a 2D-discrete wavelet transform (DWT) for spatial and multi-resolution token-mixing along with convolutional layers.
Our model even outperforms current GAN-based architectures in CelebA-HQ dataset without using an adversarially trainable discriminator.
arXiv Detail & Related papers (2023-07-01T18:41:34Z) - BLIP-Diffusion: Pre-trained Subject Representation for Controllable
Text-to-Image Generation and Editing [73.74570290836152]
BLIP-Diffusion is a new subject-driven image generation model that supports multimodal control.
Unlike other subject-driven generation models, BLIP-Diffusion introduces a new multimodal encoder which is pre-trained to provide subject representation.
arXiv Detail & Related papers (2023-05-24T04:51:04Z) - Not All Image Regions Matter: Masked Vector Quantization for
Autoregressive Image Generation [78.13793505707952]
Existing autoregressive models follow the two-stage generation paradigm that first learns a codebook in the latent space for image reconstruction and then completes the image generation autoregressively based on the learned codebook.
We propose a novel two-stage framework, which consists of Masked Quantization VAE (MQ-VAE) Stack model from modeling redundancy.
arXiv Detail & Related papers (2023-05-23T02:15:53Z) - A Method for Training-free Person Image Picture Generation [4.043367784553845]
A Character Image Feature model is proposed in this paper.
It enables the user to use the process by simply providing a picture of the character to make the image of the character in the generated image match the expectation.
The proposed model can be conveniently incorporated into the Stable Diffusion generation process without modifying the model's or used in combination with Stable Diffusion as a joint model.
arXiv Detail & Related papers (2023-05-16T21:46:28Z) - MoMo: A shared encoder Model for text, image and multi-Modal
representations [4.812718493682455]
We propose a self-supervised shared encoder model that achieves strong results on several visual, language and multimodal benchmarks.
We use a single transformer with all the encoder layers processing both the text and the image modalities.
arXiv Detail & Related papers (2023-04-11T22:26:10Z) - Restormer: Efficient Transformer for High-Resolution Image Restoration [118.9617735769827]
convolutional neural networks (CNNs) perform well at learning generalizable image priors from large-scale data.
Transformers have shown significant performance gains on natural language and high-level vision tasks.
Our model, named Restoration Transformer (Restormer), achieves state-of-the-art results on several image restoration tasks.
arXiv Detail & Related papers (2021-11-18T18:59:10Z) - Meta Internal Learning [88.68276505511922]
Internal learning for single-image generation is a framework, where a generator is trained to produce novel images based on a single image.
We propose a meta-learning approach that enables training over a collection of images, in order to model the internal statistics of the sample image more effectively.
Our results show that the models obtained are as suitable as single-image GANs for many common image applications.
arXiv Detail & Related papers (2021-10-06T16:27:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.