Machine learning force-field model for kinetic Monte Carlo simulations of itinerant Ising magnets
- URL: http://arxiv.org/abs/2411.19780v1
- Date: Fri, 29 Nov 2024 15:35:37 GMT
- Title: Machine learning force-field model for kinetic Monte Carlo simulations of itinerant Ising magnets
- Authors: Alexa Tyberg, Yunhao Fan, Gia-Wei Chern,
- Abstract summary: We present a scalable machine learning (ML) framework for large-scale kinetic Monte Carlo (kMC) simulations of electron Ising systems.
Our approach is reminiscent of the ML force-field models widely used in first-principles molecular dynamics simulations.
- Score: 0.0
- License:
- Abstract: We present a scalable machine learning (ML) framework for large-scale kinetic Monte Carlo (kMC) simulations of itinerant electron Ising systems. As the effective interactions between Ising spins in such itinerant magnets are mediated by conducting electrons, the calculation of energy change due to a local spin update requires solving an electronic structure problem. Such repeated electronic structure calculations could be overwhelmingly prohibitive for large systems. Assuming the locality principle, a convolutional neural network (CNN) model is developed to directly predict the effective local field and the corresponding energy change associated with a given spin update based on Ising configuration in a finite neighborhood. As the kernel size of the CNN is fixed at a constant, the model can be directly scalable to kMC simulations of large lattices. Our approach is reminiscent of the ML force-field models widely used in first-principles molecular dynamics simulations. Applying our ML framework to a square-lattice double-exchange Ising model, we uncover unusual coarsening of ferromagnetic domains at low temperatures. Our work highlights the potential of ML methods for large-scale modeling of similar itinerant systems with discrete dynamical variables.
Related papers
- Machine Learning Force-Field Approach for Itinerant Electron Magnets [3.3312479395168455]
We review the recent development of machine-learning (ML) frameworks for Landau-Lifshitz-Gilbert (LLG) dynamics simulations.
We show that LLG simulations based on local fields predicted by the trained ML models successfully reproduce representative non-collinear spin structures.
arXiv Detail & Related papers (2025-01-10T18:50:45Z) - GauSim: Registering Elastic Objects into Digital World by Gaussian Simulator [55.02281855589641]
GauSim is a novel neural network-based simulator designed to capture the dynamic behaviors of real-world elastic objects represented through Gaussian kernels.
We leverage continuum mechanics, modeling each kernel as a continuous piece of matter to account for realistic deformations without idealized assumptions.
GauSim incorporates explicit physics constraints, such as mass and momentum conservation, ensuring interpretable results and robust, physically plausible simulations.
arXiv Detail & Related papers (2024-12-23T18:58:17Z) - Latent Space Energy-based Neural ODEs [73.01344439786524]
This paper introduces novel deep dynamical models designed to represent continuous-time sequences.
We train the model using maximum likelihood estimation with Markov chain Monte Carlo.
Experimental results on oscillating systems, videos and real-world state sequences (MuJoCo) demonstrate that our model with the learnable energy-based prior outperforms existing counterparts.
arXiv Detail & Related papers (2024-09-05T18:14:22Z) - Machine learning force-field models for metallic spin glass [4.090038845129619]
We present a scalable machine learning framework for dynamical simulations of metallic spin glasses.
A Behler-Parrinello type neural-network model is developed to accurately and efficiently predict electron-induced local magnetic fields.
arXiv Detail & Related papers (2023-11-28T17:12:03Z) - Machine learning for phase ordering dynamics of charge density waves [5.813015022439543]
We present a machine learning framework for large-scale dynamical simulations of charge density wave (CDW) states.
A neural-network model is developed to accurately and efficiently predict local electronic forces with input from neighborhood configurations.
Our work highlights the promising potential of ML-based force-field models for dynamical simulations of functional electronic materials.
arXiv Detail & Related papers (2023-03-06T21:00:56Z) - Towards Neural Variational Monte Carlo That Scales Linearly with System
Size [67.09349921751341]
Quantum many-body problems are central to demystifying some exotic quantum phenomena, e.g., high-temperature superconductors.
The combination of neural networks (NN) for representing quantum states, and the Variational Monte Carlo (VMC) algorithm, has been shown to be a promising method for solving such problems.
We propose a NN architecture called Vector-Quantized Neural Quantum States (VQ-NQS) that utilizes vector-quantization techniques to leverage redundancies in the local-energy calculations of the VMC algorithm.
arXiv Detail & Related papers (2022-12-21T19:00:04Z) - Spreading of a local excitation in a Quantum Hierarchical Model [62.997667081978825]
We study the dynamics of the quantum Dyson hierarchical model in its paramagnetic phase.
An initial state made by a local excitation of the paramagnetic ground state is considered.
A localization mechanism is found and the excitation remains close to its initial position at arbitrary times.
arXiv Detail & Related papers (2022-07-14T10:05:20Z) - Machine learning predictions for local electronic properties of
disordered correlated electron systems [2.984639473379942]
We present a scalable machine learning (ML) model to predict local electronic properties.
Our approach is based on the locality principle, or the nearsightedness nature, of many-electron systems.
Our work underscores the promising potential of ML methods for multi-scale modeling of correlated electron systems.
arXiv Detail & Related papers (2022-04-12T17:28:51Z) - Molecular spin qudits for quantum simulation of light-matter
interactions [62.223544431366896]
We show that molecular spin qudits provide an ideal platform to simulate the quantum dynamics of photon fields strongly interacting with matter.
The basic unit of the proposed molecular quantum simulator can be realized by a simple dimer of a spin 1/2 and a spin $S$ transition metal ion, solely controlled by microwave pulses.
arXiv Detail & Related papers (2021-03-17T15:03:12Z) - Quantum Markov Chain Monte Carlo with Digital Dissipative Dynamics on
Quantum Computers [52.77024349608834]
We develop a digital quantum algorithm that simulates interaction with an environment using a small number of ancilla qubits.
We evaluate the algorithm by simulating thermal states of the transverse Ising model.
arXiv Detail & Related papers (2021-03-04T18:21:00Z) - Machine learning dynamics of phase separation in correlated electron
magnets [0.0]
We demonstrate machine-learning enabled large-scale dynamical simulations of electronic phase separation in double-exchange system.
Our work paves the way for large-scale dynamical simulations of correlated electron systems using machine-learning models.
arXiv Detail & Related papers (2020-06-07T17:01:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.