論文の概要: Towards Class-wise Robustness Analysis
- arxiv url: http://arxiv.org/abs/2411.19853v1
- Date: Fri, 29 Nov 2024 17:09:59 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-02 15:21:42.330977
- Title: Towards Class-wise Robustness Analysis
- Title(参考訳): クラスワイドロバストネス分析に向けて
- Authors: Tejaswini Medi, Julia Grabinski, Margret Keuper,
- Abstract要約: 弱い堅牢なクラスを爆発させることは、攻撃者が画像認識モデルを騙す潜在的な方法である。
本研究では、対角的に訓練された頑健な分類モデルにおけるクラス間バイアスについて検討する。
特定の対象クラスとしてのクラス偽陽性の数は、攻撃に対する脆弱性に大きな影響を及ぼすことがわかった。
- 参考スコア(独自算出の注目度): 15.351461000403074
- License:
- Abstract: While being very successful in solving many downstream tasks, the application of deep neural networks is limited in real-life scenarios because of their susceptibility to domain shifts such as common corruptions, and adversarial attacks. The existence of adversarial examples and data corruption significantly reduces the performance of deep classification models. Researchers have made strides in developing robust neural architectures to bolster decisions of deep classifiers. However, most of these works rely on effective adversarial training methods, and predominantly focus on overall model robustness, disregarding class-wise differences in robustness, which are critical. Exploiting weakly robust classes is a potential avenue for attackers to fool the image recognition models. Therefore, this study investigates class-to-class biases across adversarially trained robust classification models to understand their latent space structures and analyze their strong and weak class-wise properties. We further assess the robustness of classes against common corruptions and adversarial attacks, recognizing that class vulnerability extends beyond the number of correct classifications for a specific class. We find that the number of false positives of classes as specific target classes significantly impacts their vulnerability to attacks. Through our analysis on the Class False Positive Score, we assess a fair evaluation of how susceptible each class is to misclassification.
- Abstract(参考訳): 多くの下流タスクの解決に成功しているにもかかわらず、ディープニューラルネットワークの適用は、一般的な汚職や敵の攻撃といったドメインシフトに感受性があるため、現実のシナリオでは制限されている。
逆例の存在とデータ破損は、深い分類モデルの性能を著しく低下させる。
研究者たちは、ディープ分類器の決定を促進するために堅牢なニューラルネットワークアーキテクチャの開発に力を注いでいる。
しかし、これらの研究の多くは効果的な敵の訓練方法に依存しており、モデル全体の堅牢性に重点を置いており、クラスレベルでの堅牢性の違いを無視している。
弱い堅牢なクラスを爆発させることは、攻撃者が画像認識モデルを騙す潜在的な方法である。
そこで本研究では,相対的に訓練された頑健な分類モデル間のクラス間偏差を解析し,それらの潜在空間構造を理解し,その強弱なクラスワイド特性を解析する。
さらに、一般的な汚職や敵対的攻撃に対するクラスの堅牢性を評価し、クラス脆弱性が特定のクラスに対する正しい分類数を超えていることを認識する。
特定の対象クラスとしてのクラス偽陽性の数は、攻撃に対する脆弱性に大きな影響を及ぼすことがわかった。
本研究はFalse Positive Scoreの分析を通じて,各クラスが誤分類にどの程度影響するかを公平に評価する。
関連論文リスト
- A Comprehensive Study on Robustness of Image Classification Models:
Benchmarking and Rethinking [54.89987482509155]
ディープニューラルネットワークのロバスト性は、通常、敵の例、共通の腐敗、分散シフトに欠けている。
画像分類タスクにおいてtextbfARES-Bench と呼ばれる総合的なベンチマークロバスト性を確立する。
それに応じてトレーニング設定を設計することにより、新しい最先端の対人ロバスト性を実現する。
論文 参考訳(メタデータ) (2023-02-28T04:26:20Z) - Improving Adversarial Robustness with Self-Paced Hard-Class Pair
Reweighting [5.084323778393556]
標的外攻撃による敵の訓練は 最も認知されている方法の1つです
自然に不均衡なクラス間のセマンティックな類似性により、これらのハードクラスのペアが互いに仮想的なターゲットになる。
モデル最適化における重み付きハードクラスペアの損失について提案し、ハードクラスからの識別的特徴の学習を促す。
論文 参考訳(メタデータ) (2022-10-26T22:51:36Z) - Towards Fair Classification against Poisoning Attacks [52.57443558122475]
攻撃者が少数のサンプルを訓練データに挿入できる毒殺シナリオについて検討する。
本稿では,従来の防犯手法に適合する汎用的かつ理論的に保証された枠組みを提案する。
論文 参考訳(メタデータ) (2022-10-18T00:49:58Z) - Resisting Adversarial Attacks in Deep Neural Networks using Diverse
Decision Boundaries [12.312877365123267]
深層学習システムは、人間の目には認識できないが、モデルが誤分類される可能性がある、人工的な敵の例に弱い。
我々は,オリジナルモデルに対する多様な決定境界を持つディフェンダーモデルを構築するための,アンサンブルに基づく新しいソリューションを開発した。
我々は、MNIST、CIFAR-10、CIFAR-100といった標準画像分類データセットを用いて、最先端の敵攻撃に対する広範な実験を行った。
論文 参考訳(メタデータ) (2022-08-18T08:19:26Z) - Towards A Conceptually Simple Defensive Approach for Few-shot
classifiers Against Adversarial Support Samples [107.38834819682315]
本研究は,数発の分類器を敵攻撃から守るための概念的簡便なアプローチについて検討する。
本稿では,自己相似性とフィルタリングの概念を用いた簡易な攻撃非依存検出法を提案する。
ミニイメージネット(MI)とCUBデータセットの攻撃検出性能は良好である。
論文 参考訳(メタデータ) (2021-10-24T05:46:03Z) - A Hierarchical Assessment of Adversarial Severity [3.0478504236139528]
大規模データセットであるiNaturalist-Hへのロバストネスと重大度の測定による対向雑音の影響について検討した。
従来の逆行訓練をシンプルながら効果的な階層型カリキュラムトレーニングで強化し,これらのノードを階層型ツリー内で徐々に学習する。
我々は、階層的な防御により、深いモデルによって敵のロバスト性が1.85%向上し、全ての攻撃の重症度が平均0.17減少することを示す広範囲な実験を行った。
論文 参考訳(メタデータ) (2021-08-26T13:29:17Z) - Analysis and Applications of Class-wise Robustness in Adversarial
Training [92.08430396614273]
敵の訓練は、敵の例に対するモデルロバスト性を改善するための最も効果的な手法の1つである。
従来の研究は主にモデルの全体的な堅牢性に焦点を当てており、各クラスの役割に関する詳細な分析はいまだに欠落している。
MNIST, CIFAR-10, CIFAR-100, SVHN, STL-10, ImageNetの6つのベンチマークデータセットに対して, 逆トレーニングの詳細な診断を行う。
対戦型学習におけるより強力な攻撃手法は、主に脆弱なクラスに対するより成功した攻撃から、性能の向上を達成することを観察する。
論文 参考訳(メタデータ) (2021-05-29T07:28:35Z) - Beyond cross-entropy: learning highly separable feature distributions
for robust and accurate classification [22.806324361016863]
本稿では, 対角的ロバスト性を提供する, ディープロバストなマルチクラス分類器を訓練するための新しい手法を提案する。
提案手法に基づく潜在空間の正則化は,優れた分類精度が得られることを示す。
論文 参考訳(メタデータ) (2020-10-29T11:15:17Z) - Robustness May Be at Odds with Fairness: An Empirical Study on
Class-wise Accuracy [85.20742045853738]
CNNは敵の攻撃に弱いことが広く知られている。
本稿では,対人訓練モデルのクラスワイド精度とロバスト性に関する実証的研究を提案する。
トレーニングデータセットが各クラスに同じ数のサンプルを持つ場合でも,精度と堅牢性にはクラス間差があることが判明した。
論文 参考訳(メタデータ) (2020-10-26T06:32:32Z) - Towards Robust Fine-grained Recognition by Maximal Separation of
Discriminative Features [72.72840552588134]
本研究は, 粒度認識ネットワークにおけるクラス間の潜伏表現の近接性を, 敵攻撃の成功の鍵となる要因として同定する。
注意に基づく正規化機構を導入し、異なるクラスの識別潜在特徴を最大限に分離する。
論文 参考訳(メタデータ) (2020-06-10T18:34:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。