Transfer Learning for High-dimensional Quantile Regression with Distribution Shift
- URL: http://arxiv.org/abs/2411.19933v1
- Date: Fri, 29 Nov 2024 18:49:55 GMT
- Title: Transfer Learning for High-dimensional Quantile Regression with Distribution Shift
- Authors: Ruiqi Bai, Yijiao Zhang, Hanbo Yang, Zhongyi Zhu,
- Abstract summary: This paper focuses on the high-dimensional quantile regression with knowledge transfer under three types of distribution shift.
We propose a novel transferable set and a new transfer framework to address the above three discrepancies.
Non-asymptotic estimation error bounds and source detection consistency are established to validate the availability and superiority of our method.
- Score: 0.28927500190704564
- License:
- Abstract: Information from related source studies can often enhance the findings of a target study. However, the distribution shift between target and source studies can severely impact the efficiency of knowledge transfer. In the high-dimensional regression setting, existing transfer approaches mainly focus on the parameter shift. In this paper, we focus on the high-dimensional quantile regression with knowledge transfer under three types of distribution shift: parameter shift, covariate shift, and residual shift. We propose a novel transferable set and a new transfer framework to address the above three discrepancies. Non-asymptotic estimation error bounds and source detection consistency are established to validate the availability and superiority of our method in the presence of distribution shift. Additionally, an orthogonal debiased approach is proposed for statistical inference with knowledge transfer, leading to sharper asymptotic results. Extensive simulation results as well as real data applications further demonstrate the effectiveness of our proposed procedure.
Related papers
- Harnessing the Power of Vicinity-Informed Analysis for Classification under Covariate Shift [9.530897053573186]
This paper introduces a novel dissimilarity measure that utilizes vicinity information, i.e., the local structure of data points.
We characterize the excess error using the proposed measure and demonstrate faster or competitive convergence rates compared to previous techniques.
arXiv Detail & Related papers (2024-05-27T07:55:27Z) - TransFusion: Covariate-Shift Robust Transfer Learning for High-Dimensional Regression [11.040033344386366]
We propose a two-step method with a novel fused-regularizer to improve the learning performance on a target task with limited samples.
Nonasymptotic bound is provided for the estimation error of the target model.
We extend the method to a distributed setting, allowing for a pretraining-finetuning strategy.
arXiv Detail & Related papers (2024-04-01T14:58:16Z) - Proxy Methods for Domain Adaptation [78.03254010884783]
proxy variables allow for adaptation to distribution shift without explicitly recovering or modeling latent variables.
We develop a two-stage kernel estimation approach to adapt to complex distribution shifts in both settings.
arXiv Detail & Related papers (2024-03-12T09:32:41Z) - Robust Transfer Learning with Unreliable Source Data [13.276850367115333]
We introduce a novel quantity called the ''ambiguity level'' that measures the discrepancy between the target and source regression functions.
We propose a simple transfer learning procedure, and establish a general theorem that shows how this new quantity is related to the transferability of learning.
arXiv Detail & Related papers (2023-10-06T21:50:21Z) - Revisiting the Robustness of the Minimum Error Entropy Criterion: A
Transfer Learning Case Study [16.07380451502911]
This paper revisits the robustness of the minimum error entropy criterion to deal with non-Gaussian noises.
We investigate its feasibility and usefulness in real-life transfer learning regression tasks, where distributional shifts are common.
arXiv Detail & Related papers (2023-07-17T15:38:11Z) - Adapting to Continuous Covariate Shift via Online Density Ratio Estimation [64.8027122329609]
Dealing with distribution shifts is one of the central challenges for modern machine learning.
We propose an online method that can appropriately reuse historical information.
Our density ratio estimation method is proven to perform well by enjoying a dynamic regret bound.
arXiv Detail & Related papers (2023-02-06T04:03:33Z) - Estimation and inference for transfer learning with high-dimensional
quantile regression [3.4510296013600374]
We propose a transfer learning procedure in the framework of high-dimensional quantile regression models.
We establish error bounds of transfer learning estimator based on delicately selected transferable source domains.
By adopting data-splitting technique, we advocate a transferability detection approach that guarantees to circumvent negative transfer.
arXiv Detail & Related papers (2022-11-26T14:40:19Z) - Invariance Learning in Deep Neural Networks with Differentiable Laplace
Approximations [76.82124752950148]
We develop a convenient gradient-based method for selecting the data augmentation.
We use a differentiable Kronecker-factored Laplace approximation to the marginal likelihood as our objective.
arXiv Detail & Related papers (2022-02-22T02:51:11Z) - Exploring Transferable and Robust Adversarial Perturbation Generation
from the Perspective of Network Hierarchy [52.153866313879924]
The transferability and robustness of adversarial examples are two practical yet important properties for black-box adversarial attacks.
We propose a transferable and robust adversarial generation (TRAP) method.
Our TRAP achieves impressive transferability and high robustness against certain interferences.
arXiv Detail & Related papers (2021-08-16T11:52:41Z) - Frustratingly Easy Transferability Estimation [64.42879325144439]
We propose a simple, efficient, and effective transferability measure named TransRate.
TransRate measures the transferability as the mutual information between the features of target examples extracted by a pre-trained model and labels of them.
Despite its extraordinary simplicity in 10 lines of codes, TransRate performs remarkably well in extensive evaluations on 22 pre-trained models and 16 downstream tasks.
arXiv Detail & Related papers (2021-06-17T10:27:52Z) - Towards Accurate Knowledge Transfer via Target-awareness Representation
Disentanglement [56.40587594647692]
We propose a novel transfer learning algorithm, introducing the idea of Target-awareness REpresentation Disentanglement (TRED)
TRED disentangles the relevant knowledge with respect to the target task from the original source model and used as a regularizer during fine-tuning the target model.
Experiments on various real world datasets show that our method stably improves the standard fine-tuning by more than 2% in average.
arXiv Detail & Related papers (2020-10-16T17:45:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.