論文の概要: T2Vid: Translating Long Text into Multi-Image is the Catalyst for Video-LLMs
- arxiv url: http://arxiv.org/abs/2411.19951v2
- Date: Mon, 02 Dec 2024 06:54:47 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-03 16:42:42.90151
- Title: T2Vid: Translating Long Text into Multi-Image is the Catalyst for Video-LLMs
- Title(参考訳): T2Vid:ビデオLLMのための触媒である長文をマルチイメージに変換する
- Authors: Shukang Yin, Chaoyou Fu, Sirui Zhao, Yunhang Shen, Chunjiang Ge, Yan Yang, Zuwei Long, Yuhan Dai, Tong Xu, Xing Sun, Ran He, Caifeng Shan, Enhong Chen,
- Abstract要約: そこで我々は,T2Vidと呼ばれるビデオライクなサンプルを合成し,学習コーパスの多様性を高める手法を開発した。
提案手法は,長いビデオサンプルをトレーニングすることなく,長いビデオ理解の性能を向上させることができる。
- 参考スコア(独自算出の注目度): 102.66246727371583
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The success of Multimodal Large Language Models (MLLMs) in the image domain has garnered wide attention from the research community. Drawing on previous successful experiences, researchers have recently explored extending the success to the video understanding realms. Apart from training from scratch, an efficient way is to utilize the pre-trained image-LLMs, leading to two mainstream approaches, i.e. zero-shot inference and further fine-tuning with video data. In this work, our study of these approaches harvests an effective data augmentation method. We first make a deeper inspection of the zero-shot inference way and identify two limitations, i.e. limited generalization and lack of temporal understanding capabilities. Thus, we further investigate the fine-tuning approach and find a low learning efficiency when simply using all the video data samples, which can be attributed to a lack of instruction diversity. Aiming at this issue, we develop a method called T2Vid to synthesize video-like samples to enrich the instruction diversity in the training corpus. Integrating these data enables a simple and efficient training scheme, which achieves performance comparable to or even superior to using full video datasets by training with just 15% the sample size. Meanwhile, we find that the proposed scheme can boost the performance of long video understanding without training with long video samples. We hope our study will spark more thinking about using MLLMs for video understanding and curation of high-quality data. The code is released at https://github.com/xjtupanda/T2Vid.
- Abstract(参考訳): 画像領域におけるMLLM(Multimodal Large Language Models)の成功は,研究コミュニティから広く注目を集めている。
これまでの成功した経験に基づいて、研究者は最近、成功をビデオ理解領域に拡張することを検討している。
ゼロショット推論(ゼロショット推論)とビデオデータによる微調整(ファインチューニング)という2つの主要なアプローチが導かれる。
本研究では,これらの手法が有効なデータ拡張手法であることを示す。
まず、ゼロショット推論方法のより深い検査を行い、2つの制限、すなわち、限定的な一般化と時間的理解能力の欠如を識別する。
そこで本研究では,教師の多様性の欠如に起因して,ビデオデータサンプルのすべてを単純に使用する場合,微調整手法をさらに検討し,学習効率を低くする。
そこで本研究では,ビデオライクなサンプルを合成し,学習コーパスの多様性を高めるためのT2Vidという手法を開発した。
これらのデータを統合することで、シンプルで効率的なトレーニングスキームが可能になり、サンプルサイズを15%程度でトレーニングすることで、フルビデオデータセットに匹敵する、あるいはそれ以上のパフォーマンスを実現することができる。
一方,提案手法は,長いビデオサンプルをトレーニングすることなく,長いビデオ理解の性能を向上させることができる。
ビデオの理解と高品質なデータのキュレーションにMLLMを使うことについて、私たちの研究がより深く考えることを願っています。
コードはhttps://github.com/xjtupanda/T2Vid.comで公開されている。
関連論文リスト
- PerceptionLM: Open-Access Data and Models for Detailed Visual Understanding [126.15907330726067]
我々は、画像とビデオの理解において透過的な研究を行うために、完全にオープンで再現可能なフレームワークでパーセプションモデル言語(PLM)を構築した。
モデルからの蒸留なしで標準的な訓練パイプラインを分析し、大規模合成データを調べ、重要なデータギャップを識別する。
論文 参考訳(メタデータ) (2025-04-17T17:59:56Z) - Transferable text data distillation by trajectory matching [27.826518926355295]
データ蒸留法は、少数のデータサンプルを合成し、全データセットのトレーニング効果を達成することを目的としている。
本研究では,軌道マッチングに基づいて擬似的プロンプトデータを学習する手法を提案する。
ARC-Easy と MMLU の命令チューニングデータセットを含む2つのベンチマークによる評価により,SOTA データ選択手法 LESS よりも蒸留法の方が優れていることを確認した。
論文 参考訳(メタデータ) (2025-04-14T02:39:26Z) - Few-shot LLM Synthetic Data with Distribution Matching [37.55363714371521]
大規模言語モデル(LLM)は、より小さなモデルの性能を高めるために高品質な合成データを生成する。
LLMの生成した合成データは、しばしばキー言語属性の実際のデータとは異なる。
鍵属性分布マッチングに基づく合成データ生成およびフィルタリングフレームワークであるSynAlignを紹介する。
論文 参考訳(メタデータ) (2025-02-09T16:43:32Z) - Free Video-LLM: Prompt-guided Visual Perception for Efficient Training-free Video LLMs [56.040198387038025]
トレーニング不要ビデオLLMの効率的な推論のための新しいプロンプト誘導視覚認識フレームワーク(Free Video-LLM)を提案する。
提案手法は,複数のビデオ質問応答ベンチマークにおいて高い性能を維持しながら,視覚トークンの数を効果的に削減する。
論文 参考訳(メタデータ) (2024-10-14T12:35:12Z) - Video Instruction Tuning With Synthetic Data [84.64519990333406]
ビデオ命令追従のための高品質な合成データセット、すなわちLLaVA-Video-178Kを作成する。
このデータセットには、詳細なキャプション、オープンエンド質問回答(QA)、複数選択QAといった重要なタスクが含まれている。
このデータセットをトレーニングすることにより、既存の視覚的インストラクションチューニングデータと組み合わせて、新しいビデオLMMであるLLaVA-Videoを導入する。
論文 参考訳(メタデータ) (2024-10-03T17:36:49Z) - Entropy Law: The Story Behind Data Compression and LLM Performance [115.70395740286422]
モデル性能はトレーニングデータの圧縮比と負の相関関係にあり,トレーニング損失が小さくなるのが普通である。
エントロピー法則の知見に基づいて, 極めて効率的で普遍的なデータ選択法を提案する。
また,モデルトレーニング開始時の潜在的な性能リスクを検出するエントロピー法則の興味深い応用を提案する。
論文 参考訳(メタデータ) (2024-07-09T08:14:29Z) - Harvest Video Foundation Models via Efficient Post-Pretraining [67.30842563833185]
本稿では,画像から映像基盤モデルを抽出する効率的なフレームワークを提案する。
提案手法は,入力ビデオパッチをランダムにドロップし,プレトレーニング後の入力テキストをマスクアウトすることで,直感的に簡単である。
提案手法は,プレトレーニング済みの映像基盤モデルに匹敵する,最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2023-10-30T14:06:16Z) - Weakly Supervised Two-Stage Training Scheme for Deep Video Fight
Detection Model [0.0]
ビデオにおけるファイト検出は、今日の監視システムとストリーミングメディアの普及にともなう、新たなディープラーニングアプリケーションである。
これまでの研究は、この問題に対処するための行動認識技術に大きく依存していた。
本研究では,動作認識特徴抽出器と異常スコア生成器の合成として,戦闘検出モデルを設計する。
論文 参考訳(メタデータ) (2022-09-23T08:29:16Z) - Cross-modal Manifold Cutmix for Self-supervised Video Representation
Learning [50.544635516455116]
本稿では,自己教師型学習のためのビデオ強化の設計に焦点をあてる。
まず、ビデオを混ぜて新しいビデオサンプルを作るための最良の戦略を分析します。
ビデオテッセラクトを他のビデオテッセラクトに挿入するCross-Modal Manifold Cutmix (CMMC)を提案する。
論文 参考訳(メタデータ) (2021-12-07T18:58:33Z) - VALUE: A Multi-Task Benchmark for Video-and-Language Understanding
Evaluation [124.02278735049235]
VALUEベンチマークは、幅広いビデオジャンル、ビデオの長さ、データボリューム、タスクの難易度をカバーすることを目的としている。
大規模なVidL事前学習による各種ベースライン法の評価を行った。
我々の最高のモデルと人間のパフォーマンスの間の大きなギャップは、先進的なVidLモデルの将来の研究を要求する。
論文 参考訳(メタデータ) (2021-06-08T18:34:21Z) - Automatic Curation of Large-Scale Datasets for Audio-Visual
Representation Learning [62.47593143542552]
本稿では,自動データセットキュレーションのためのサブセット最適化手法について述べる。
本研究では,高視聴覚対応の映像を抽出し,自己監視モデルが自動的に構築されているにもかかわらず,既存のスケールのビデオデータセットと類似したダウンストリームパフォーマンスを達成できることを実証した。
論文 参考訳(メタデータ) (2021-01-26T14:27:47Z) - Omni-supervised Facial Expression Recognition via Distilled Data [120.11782405714234]
ネットワークトレーニングにおいて,信頼度の高いサンプルを多量のラベルのないデータで活用するためのオムニ教師付き学習を提案する。
我々は,新しいデータセットが学習したFERモデルの能力を大幅に向上させることができることを実験的に検証した。
そこで本研究では,生成したデータセットを複数のクラスワイド画像に圧縮するために,データセット蒸留戦略を適用することを提案する。
論文 参考訳(メタデータ) (2020-05-18T09:36:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。