TransFair: Transferring Fairness from Ocular Disease Classification to Progression Prediction
- URL: http://arxiv.org/abs/2412.00051v2
- Date: Tue, 03 Dec 2024 03:33:50 GMT
- Title: TransFair: Transferring Fairness from Ocular Disease Classification to Progression Prediction
- Authors: Leila Gheisi, Henry Chu, Raju Gottumukkala, Yan Luo, Xingquan Zhu, Mengyu Wang, Min Shi,
- Abstract summary: We introduce TransFair to enhance demographic fairness in progression prediction for ocular diseases.
TransFair aims to transfer a fairness-enhanced disease classification model to the task of progression prediction with fairness preserved.
- Score: 15.034985388431734
- License:
- Abstract: The use of artificial intelligence (AI) in automated disease classification significantly reduces healthcare costs and improves the accessibility of services. However, this transformation has given rise to concerns about the fairness of AI, which disproportionately affects certain groups, particularly patients from underprivileged populations. Recently, a number of methods and large-scale datasets have been proposed to address group performance disparities. Although these methods have shown effectiveness in disease classification tasks, they may fall short in ensuring fair prediction of disease progression, mainly because of limited longitudinal data with diverse demographics available for training a robust and equitable prediction model. In this paper, we introduce TransFair to enhance demographic fairness in progression prediction for ocular diseases. TransFair aims to transfer a fairness-enhanced disease classification model to the task of progression prediction with fairness preserved. Specifically, we train a fair EfficientNet, termed FairEN, equipped with a fairness-aware attention mechanism using extensive data for ocular disease classification. Subsequently, this fair classification model is adapted to a fair progression prediction model through knowledge distillation, which aims to minimize the latent feature distances between the classification and progression prediction models. We evaluate FairEN and TransFair for fairness-enhanced ocular disease classification and progression prediction using both two-dimensional (2D) and 3D retinal images. Extensive experiments and comparisons with models with and without considering fairness learning show that TransFair effectively enhances demographic equity in predicting ocular disease progression.
Related papers
- Latent Drifting in Diffusion Models for Counterfactual Medical Image Synthesis [55.959002385347645]
Scaling by training on large datasets has been shown to enhance the quality and fidelity of image generation and manipulation with diffusion models.
Latent Drifting enables diffusion models to be conditioned for medical images fitted for the complex task of counterfactual image generation.
Our results demonstrate significant performance gains in various scenarios when combined with different fine-tuning schemes.
arXiv Detail & Related papers (2024-12-30T01:59:34Z) - FairREAD: Re-fusing Demographic Attributes after Disentanglement for Fair Medical Image Classification [3.615240611746158]
We propose Fair Re-fusion After Disentanglement (FairREAD), a framework that mitigates unfairness by re-integrating sensitive demographic attributes into fair image representations.
FairREAD employs adversarial training to disentangle demographic information while using a controlled re-fusion mechanism to preserve clinically relevant details.
Comprehensive evaluations on a large-scale clinical X-ray dataset demonstrate that FairREAD significantly reduces unfairness metrics while maintaining diagnostic accuracy.
arXiv Detail & Related papers (2024-12-20T22:17:57Z) - FairSkin: Fair Diffusion for Skin Disease Image Generation [54.29840149709033]
Diffusion Model (DM) has become a leading method in generating synthetic medical images, but it suffers from a critical twofold bias.
We propose FairSkin, a novel DM framework that mitigates these biases through a three-level resampling mechanism.
Our approach significantly improves the diversity and quality of generated images, contributing to more equitable skin disease detection in clinical settings.
arXiv Detail & Related papers (2024-10-29T21:37:03Z) - Explainable AI for Fair Sepsis Mortality Predictive Model [3.556697333718976]
We propose a method that learns a performance-optimized predictive model and employs the transfer learning process to produce a model with better fairness.
Our method not only aids in identifying and mitigating biases within the predictive model but also fosters trust among healthcare stakeholders.
arXiv Detail & Related papers (2024-04-19T18:56:46Z) - FERI: A Multitask-based Fairness Achieving Algorithm with Applications to Fair Organ Transplantation [15.481475313958219]
We introduce Fairness through the Equitable Rate of Improvement in Multitask Learning (FERI) algorithm for fair predictions of graft failure risk in liver transplant patients.
FERI constrains subgroup loss by balancing learning rates and preventing subgroup dominance in the training process.
arXiv Detail & Related papers (2023-10-20T21:14:07Z) - Learning for Counterfactual Fairness from Observational Data [62.43249746968616]
Fairness-aware machine learning aims to eliminate biases of learning models against certain subgroups described by certain protected (sensitive) attributes such as race, gender, and age.
A prerequisite for existing methods to achieve counterfactual fairness is the prior human knowledge of the causal model for the data.
In this work, we address the problem of counterfactually fair prediction from observational data without given causal models by proposing a novel framework CLAIRE.
arXiv Detail & Related papers (2023-07-17T04:08:29Z) - Generative models improve fairness of medical classifiers under
distribution shifts [49.10233060774818]
We show that learning realistic augmentations automatically from data is possible in a label-efficient manner using generative models.
We demonstrate that these learned augmentations can surpass ones by making models more robust and statistically fair in- and out-of-distribution.
arXiv Detail & Related papers (2023-04-18T18:15:38Z) - FairAdaBN: Mitigating unfairness with adaptive batch normalization and
its application to dermatological disease classification [14.589159162086926]
We propose FairAdaBN, which makes batch normalization adaptive to sensitive attribute.
We propose a new metric, named Fairness-Accuracy Trade-off Efficiency (FATE), to compute normalized fairness improvement over accuracy drop.
Experiments on two dermatological datasets show that our proposed method outperforms other methods on fairness criteria and FATE.
arXiv Detail & Related papers (2023-03-15T02:22:07Z) - Evaluating the Fairness of Deep Learning Uncertainty Estimates in
Medical Image Analysis [3.5536769591744557]
Deep learning (DL) models have shown great success in many medical image analysis tasks.
However, deployment of the resulting models into real clinical contexts requires robustness and fairness across different sub-populations.
Recent studies have shown significant biases in DL models across demographic subgroups, indicating a lack of fairness in the models.
arXiv Detail & Related papers (2023-03-06T16:01:30Z) - On the Robustness of Pretraining and Self-Supervision for a Deep
Learning-based Analysis of Diabetic Retinopathy [70.71457102672545]
We compare the impact of different training procedures for diabetic retinopathy grading.
We investigate different aspects such as quantitative performance, statistics of the learned feature representations, interpretability and robustness to image distortions.
Our results indicate that models from ImageNet pretraining report a significant increase in performance, generalization and robustness to image distortions.
arXiv Detail & Related papers (2021-06-25T08:32:45Z) - STELAR: Spatio-temporal Tensor Factorization with Latent Epidemiological
Regularization [76.57716281104938]
We develop a tensor method to predict the evolution of epidemic trends for many regions simultaneously.
STELAR enables long-term prediction by incorporating latent temporal regularization through a system of discrete-time difference equations.
We conduct experiments using both county- and state-level COVID-19 data and show that our model can identify interesting latent patterns of the epidemic.
arXiv Detail & Related papers (2020-12-08T21:21:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.