Fairness Evolution in Continual Learning for Medical Imaging
- URL: http://arxiv.org/abs/2406.02480v1
- Date: Wed, 10 Apr 2024 09:48:52 GMT
- Title: Fairness Evolution in Continual Learning for Medical Imaging
- Authors: Marina Ceccon, Davide Dalle Pezze, Alessandro Fabris, Gian Antonio Susto,
- Abstract summary: We study the behavior of Continual Learning (CL) strategies in medical imaging regarding classification performance.
We evaluate the Replay, Learning without Forgetting (LwF), LwF, and Pseudo-Label strategies.
LwF and Pseudo-Label exhibit optimal classification performance, but when including fairness metrics in the evaluation, it is clear that Pseudo-Label is less biased.
- Score: 47.52603262576663
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep Learning (DL) has made significant strides in various medical applications in recent years, achieving remarkable results. In the field of medical imaging, DL models can assist doctors in disease diagnosis by classifying pathologies in Chest X-ray images. However, training on new data to expand model capabilities and adapt to distribution shifts is a notable challenge these models face. Continual Learning (CL) has emerged as a solution to this challenge, enabling models to adapt to new data while retaining knowledge gained from previous experiences. Previous studies have analyzed the behavior of CL strategies in medical imaging regarding classification performance. However, when considering models that interact with sensitive information, such as in the medical domain, it is imperative to disaggregate the performance of socially salient groups. Indeed, DL algorithms can exhibit biases against certain sub-populations, leading to discrepancies in predictive performance across different groups identified by sensitive attributes such as age, race/ethnicity, sex/gender, and socioeconomic status. In this study, we go beyond the typical assessment of classification performance in CL and study bias evolution over successive tasks with domain-specific fairness metrics. Specifically, we evaluate the CL strategies using the well-known CheXpert (CXP) and ChestX-ray14 (NIH) datasets. We consider a class incremental scenario of five tasks with 12 pathologies. We evaluate the Replay, Learning without Forgetting (LwF), LwF Replay, and Pseudo-Label strategies. LwF and Pseudo-Label exhibit optimal classification performance, but when including fairness metrics in the evaluation, it is clear that Pseudo-Label is less biased. For this reason, this strategy should be preferred when considering real-world scenarios in which it is crucial to consider the fairness of the model.
Related papers
- Graph-Ensemble Learning Model for Multi-label Skin Lesion Classification
using Dermoscopy and Clinical Images [7.159532626507458]
This study introduces a Graph Convolution Network (GCN) to exploit prior co-occurrence between each category as a correlation matrix into the deep learning model for the multi-label classification.
We propose a Graph-Ensemble Learning Model (GELN) that views the prediction from GCN as complementary information of the predictions from the fusion model.
arXiv Detail & Related papers (2023-07-04T13:19:57Z) - Continual Learning for Tumor Classification in Histopathology Images [0.0]
Continual learning models that alleviate model forgetting need to be introduced in digital pathology based analysis.
Here, we propose CL scenarios in DP settings, where histopathology image data from different sources/distributions arrive sequentially.
We established an augmented dataset for colorectal cancer H&E classification to simulate shifts of image appearance.
We leveraged a breast tumor H&E dataset along with the colorectal cancer to evaluate CL from different tumor types.
arXiv Detail & Related papers (2022-08-07T01:04:25Z) - LifeLonger: A Benchmark for Continual Disease Classification [59.13735398630546]
We introduce LifeLonger, a benchmark for continual disease classification on the MedMNIST collection.
Task and class incremental learning of diseases address the issue of classifying new samples without re-training the models from scratch.
Cross-domain incremental learning addresses the issue of dealing with datasets originating from different institutions while retaining the previously obtained knowledge.
arXiv Detail & Related papers (2022-04-12T12:25:05Z) - Variational Knowledge Distillation for Disease Classification in Chest
X-Rays [102.04931207504173]
We propose itvariational knowledge distillation (VKD), which is a new probabilistic inference framework for disease classification based on X-rays.
We demonstrate the effectiveness of our method on three public benchmark datasets with paired X-ray images and EHRs.
arXiv Detail & Related papers (2021-03-19T14:13:56Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
We focus on few-shot disease subtype prediction problem, identifying subgroups of similar patients.
We introduce meta learning techniques to develop a new model, which can extract the common experience or knowledge from interrelated clinical tasks.
Our new model is built upon a carefully designed meta-learner, called Prototypical Network, that is a simple yet effective meta learning machine for few-shot image classification.
arXiv Detail & Related papers (2020-09-02T02:50:30Z) - Curriculum learning for improved femur fracture classification:
scheduling data with prior knowledge and uncertainty [36.54112505898611]
We propose a method for the automatic classification of proximal femur fractures into 3 and 7 AO classes based on a Convolutional Neural Network (CNN)
Our novel formulation reunites three curriculum strategies: individually weighting training samples, reordering the training set, and sampling subsets of data.
The curriculum improves proximal femur fracture classification up to the performance of experienced trauma surgeons.
arXiv Detail & Related papers (2020-07-31T14:28:33Z) - Deep Mining External Imperfect Data for Chest X-ray Disease Screening [57.40329813850719]
We argue that incorporating an external CXR dataset leads to imperfect training data, which raises the challenges.
We formulate the multi-label disease classification problem as weighted independent binary tasks according to the categories.
Our framework simultaneously models and tackles the domain and label discrepancies, enabling superior knowledge mining ability.
arXiv Detail & Related papers (2020-06-06T06:48:40Z) - Risk of Training Diagnostic Algorithms on Data with Demographic Bias [0.5599792629509227]
We conduct a survey of the MICCAI 2018 proceedings to investigate the common practice in medical image analysis applications.
Surprisingly, we found that papers focusing on diagnosis rarely describe the demographics of the datasets used.
We show that it is possible to learn unbiased features by explicitly using demographic variables in an adversarial training setup.
arXiv Detail & Related papers (2020-05-20T13:51:01Z) - Semi-supervised Medical Image Classification with Relation-driven
Self-ensembling Model [71.80319052891817]
We present a relation-driven semi-supervised framework for medical image classification.
It exploits the unlabeled data by encouraging the prediction consistency of given input under perturbations.
Our method outperforms many state-of-the-art semi-supervised learning methods on both single-label and multi-label image classification scenarios.
arXiv Detail & Related papers (2020-05-15T06:57:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.