Safe to Serve: Aligning Instruction-Tuned Models for Safety and Helpfulness
- URL: http://arxiv.org/abs/2412.00074v1
- Date: Tue, 26 Nov 2024 06:52:22 GMT
- Title: Safe to Serve: Aligning Instruction-Tuned Models for Safety and Helpfulness
- Authors: Avinash Amballa, Durga Sandeep Saluru, Gayathri Akkinapalli, Abhishek Sureddy, Akshay Kumar Sureddy,
- Abstract summary: Large language models (LLMs) have demonstrated remarkable capabilities in complex reasoning and text generation.
LLMs can inadvertently generate unsafe or biased responses when prompted with problematic inputs.
This research addresses the critical challenge of developing language models that generate both helpful and harmless content.
- Score: 0.0
- License:
- Abstract: Large language models (LLMs) have demonstrated remarkable capabilities in complex reasoning and text generation. However, these models can inadvertently generate unsafe or biased responses when prompted with problematic inputs, raising significant ethical and practical concerns for real-world deployment. This research addresses the critical challenge of developing language models that generate both helpful and harmless content, navigating the delicate balance between model performance and safety. We demonstrate that incorporating safety-related instructions during the instruction-tuning of pre-trained models significantly reduces toxic responses to unsafe prompts without compromising performance on helpfulness datasets. We found Direct Preference Optimization (DPO) to be particularly effective, outperforming both SIT and RAFT by leveraging both chosen and rejected responses for learning. Our approach increased safe responses from 40$\%$ to over 90$\%$ across various harmfulness benchmarks. In addition, we discuss a rigorous evaluation framework encompassing specialized metrics and diverse datasets for safety and helpfulness tasks ensuring a comprehensive assessment of the model's capabilities.
Related papers
- Vulnerability Mitigation for Safety-Aligned Language Models via Debiasing [12.986006070964772]
Safety alignment is an essential research topic for real-world AI applications.
Our study first identified the difficulty of eliminating such vulnerabilities without sacrificing the model's helpfulness.
Our method could enhance the model's helpfulness while maintaining safety, thus improving the trade-off-front.
arXiv Detail & Related papers (2025-02-04T09:31:54Z) - Safety at Scale: A Comprehensive Survey of Large Model Safety [299.801463557549]
We present a comprehensive taxonomy of safety threats to large models, including adversarial attacks, data poisoning, backdoor attacks, jailbreak and prompt injection attacks, energy-latency attacks, data and model extraction attacks, and emerging agent-specific threats.
We identify and discuss the open challenges in large model safety, emphasizing the need for comprehensive safety evaluations, scalable and effective defense mechanisms, and sustainable data practices.
arXiv Detail & Related papers (2025-02-02T05:14:22Z) - Refining Input Guardrails: Enhancing LLM-as-a-Judge Efficiency Through Chain-of-Thought Fine-Tuning and Alignment [2.9775785740619254]
Large Language Models (LLMs) have demonstrated powerful capabilities that render them valuable in different applications, including conversational AI products.
It is paramount to ensure the security and reliability of these products by mitigating their vulnerabilities towards malicious user interactions.
We present a study on the efficacy of fine-tuning and aligning Chain-of-Thought (CoT) responses of different LLMs that serve as input moderation guardrails.
arXiv Detail & Related papers (2025-01-22T18:40:57Z) - Enhancing AI Safety Through the Fusion of Low Rank Adapters [7.384556630042846]
Low-Rank Adapter Fusion mitigates harmful responses when faced with malicious prompts.
We show a 42% reduction in the harmfulness rate by leveraging LoRA fusion between a task adapter and a safety adapter.
We also observe exaggerated safety behaviour, where the model rejects safe prompts that closely resemble unsafe ones.
arXiv Detail & Related papers (2024-12-30T13:12:27Z) - OpenAI o1 System Card [274.83891368890977]
The o1 model series is trained with large-scale reinforcement learning to reason using chain of thought.
This report outlines the safety work carried out for the OpenAI o1 and OpenAI o1-mini models, including safety evaluations, external red teaming, and Preparedness Framework evaluations.
arXiv Detail & Related papers (2024-12-21T18:04:31Z) - Safety-Aware Fine-Tuning of Large Language Models [29.5636201427693]
Fine-tuning Large Language Models (LLMs) has emerged as a common practice for tailoring models to individual needs and preferences.
We propose a novel Safety-Aware Fine-Tuning (SAFT) framework designed to automatically detect and remove potentially harmful data.
arXiv Detail & Related papers (2024-10-13T21:24:25Z) - Bi-Factorial Preference Optimization: Balancing Safety-Helpfulness in Language Models [94.39278422567955]
Fine-tuning large language models (LLMs) on human preferences has proven successful in enhancing their capabilities.
However, ensuring the safety of LLMs during the fine-tuning remains a critical concern.
We propose a supervised learning framework called Bi-Factorial Preference Optimization (BFPO) to address this issue.
arXiv Detail & Related papers (2024-08-27T17:31:21Z) - Refuse Whenever You Feel Unsafe: Improving Safety in LLMs via Decoupled Refusal Training [67.30423823744506]
This study addresses a critical gap in safety tuning practices for Large Language Models (LLMs)
We introduce a novel approach, Decoupled Refusal Training (DeRTa), designed to empower LLMs to refuse compliance to harmful prompts at any response position.
DeRTa incorporates two novel components: (1) Maximum Likelihood Estimation with Harmful Response Prefix, which trains models to recognize and avoid unsafe content by appending a segment of harmful response to the beginning of a safe response, and (2) Reinforced Transition Optimization (RTO), which equips models with the ability to transition from potential harm to safety refusal consistently throughout the harmful
arXiv Detail & Related papers (2024-07-12T09:36:33Z) - Safety Arithmetic: A Framework for Test-time Safety Alignment of Language Models by Steering Parameters and Activations [19.132597762214722]
Current alignment methods struggle with dynamic user intentions and complex objectives.
We propose Safety Arithmetic, a training-free framework enhancing safety across different scenarios.
Our experiments show that Safety Arithmetic significantly improves safety measures, reduces over-safety, and maintains model utility.
arXiv Detail & Related papers (2024-06-17T17:48:13Z) - The Art of Defending: A Systematic Evaluation and Analysis of LLM
Defense Strategies on Safety and Over-Defensiveness [56.174255970895466]
Large Language Models (LLMs) play an increasingly pivotal role in natural language processing applications.
This paper presents Safety and Over-Defensiveness Evaluation (SODE) benchmark.
arXiv Detail & Related papers (2023-12-30T17:37:06Z) - Evaluating the Safety of Deep Reinforcement Learning Models using
Semi-Formal Verification [81.32981236437395]
We present a semi-formal verification approach for decision-making tasks based on interval analysis.
Our method obtains comparable results over standard benchmarks with respect to formal verifiers.
Our approach allows to efficiently evaluate safety properties for decision-making models in practical applications.
arXiv Detail & Related papers (2020-10-19T11:18:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.