Enhancing AI Safety Through the Fusion of Low Rank Adapters
- URL: http://arxiv.org/abs/2501.06208v1
- Date: Mon, 30 Dec 2024 13:12:27 GMT
- Title: Enhancing AI Safety Through the Fusion of Low Rank Adapters
- Authors: Satya Swaroop Gudipudi, Sreeram Vipparla, Harpreet Singh, Shashwat Goel, Ponnurangam Kumaraguru,
- Abstract summary: Low-Rank Adapter Fusion mitigates harmful responses when faced with malicious prompts.
We show a 42% reduction in the harmfulness rate by leveraging LoRA fusion between a task adapter and a safety adapter.
We also observe exaggerated safety behaviour, where the model rejects safe prompts that closely resemble unsafe ones.
- Score: 7.384556630042846
- License:
- Abstract: Instruction fine-tuning of large language models (LLMs) is a powerful method for improving task-specific performance, but it can inadvertently lead to a phenomenon where models generate harmful responses when faced with malicious prompts. In this paper, we explore Low-Rank Adapter Fusion (LoRA) as a means to mitigate these risks while preserving the model's ability to handle diverse instructions effectively. Through an extensive comparative analysis against established baselines using recognized benchmark datasets, we demonstrate a 42\% reduction in the harmfulness rate by leveraging LoRA fusion between a task adapter and a safety adapter, the latter of which is specifically trained on our safety dataset. However, we also observe exaggerated safety behaviour, where the model rejects safe prompts that closely resemble unsafe ones
Related papers
- STAIR: Improving Safety Alignment with Introspective Reasoning [44.780098674618614]
We propose STAIR, a framework that integrates SafeTy Alignment with Itrospective Reasoning.
We show that STAIR effectively mitigates harmful outputs while better preserving helpfulness, compared to instinctive alignment strategies.
With test-time scaling, STAIR achieves a safety performance comparable to Claude-3.5 against popular jailbreak attacks.
arXiv Detail & Related papers (2025-02-04T15:02:55Z) - Vulnerability Mitigation for Safety-Aligned Language Models via Debiasing [12.986006070964772]
Safety alignment is an essential research topic for real-world AI applications.
Our study first identified the difficulty of eliminating such vulnerabilities without sacrificing the model's helpfulness.
Our method could enhance the model's helpfulness while maintaining safety, thus improving the trade-off-front.
arXiv Detail & Related papers (2025-02-04T09:31:54Z) - Safe to Serve: Aligning Instruction-Tuned Models for Safety and Helpfulness [0.0]
Large language models (LLMs) have demonstrated remarkable capabilities in complex reasoning and text generation.
LLMs can inadvertently generate unsafe or biased responses when prompted with problematic inputs.
This research addresses the critical challenge of developing language models that generate both helpful and harmless content.
arXiv Detail & Related papers (2024-11-26T06:52:22Z) - SCANS: Mitigating the Exaggerated Safety for LLMs via Safety-Conscious Activation Steering [56.92068213969036]
Safety alignment is indispensable for Large Language Models (LLMs) to defend threats from malicious instructions.
Recent researches reveal safety-aligned LLMs prone to reject benign queries due to the exaggerated safety issue.
We propose a Safety-Conscious Activation Steering (SCANS) method to mitigate the exaggerated safety concerns.
arXiv Detail & Related papers (2024-08-21T10:01:34Z) - What Makes and Breaks Safety Fine-tuning? A Mechanistic Study [64.9691741899956]
Safety fine-tuning helps align Large Language Models (LLMs) with human preferences for their safe deployment.
We design a synthetic data generation framework that captures salient aspects of an unsafe input.
Using this, we investigate three well-known safety fine-tuning methods.
arXiv Detail & Related papers (2024-07-14T16:12:57Z) - Refuse Whenever You Feel Unsafe: Improving Safety in LLMs via Decoupled Refusal Training [67.30423823744506]
This study addresses a critical gap in safety tuning practices for Large Language Models (LLMs)
We introduce a novel approach, Decoupled Refusal Training (DeRTa), designed to empower LLMs to refuse compliance to harmful prompts at any response position.
DeRTa incorporates two novel components: (1) Maximum Likelihood Estimation with Harmful Response Prefix, which trains models to recognize and avoid unsafe content by appending a segment of harmful response to the beginning of a safe response, and (2) Reinforced Transition Optimization (RTO), which equips models with the ability to transition from potential harm to safety refusal consistently throughout the harmful
arXiv Detail & Related papers (2024-07-12T09:36:33Z) - Jailbreaking as a Reward Misspecification Problem [80.52431374743998]
We propose a novel perspective that attributes this vulnerability to reward misspecification during the alignment process.
We introduce a metric ReGap to quantify the extent of reward misspecification and demonstrate its effectiveness.
We present ReMiss, a system for automated red teaming that generates adversarial prompts in a reward-misspecified space.
arXiv Detail & Related papers (2024-06-20T15:12:27Z) - Mimicking User Data: On Mitigating Fine-Tuning Risks in Closed Large Language Models [53.50543146583101]
Fine-tuning large language models on small datasets can enhance their performance on specific downstream tasks.
Malicious actors can subtly manipulate the structure of almost any task-specific dataset to foster significantly more dangerous model behaviors.
We propose a novel mitigation strategy that mixes in safety data which mimics the task format and prompting style of the user data.
arXiv Detail & Related papers (2024-06-12T18:33:11Z) - On Prompt-Driven Safeguarding for Large Language Models [172.13943777203377]
We find that in the representation space, the input queries are typically moved by safety prompts in a "higher-refusal" direction.
Inspired by these findings, we propose a method for safety prompt optimization, namely DRO.
Treating a safety prompt as continuous, trainable embeddings, DRO learns to move the queries' representations along or opposite the refusal direction, depending on their harmfulness.
arXiv Detail & Related papers (2024-01-31T17:28:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.