論文の概要: Unpacking the Individual Components of Diffusion Policy
- arxiv url: http://arxiv.org/abs/2412.00084v1
- Date: Wed, 27 Nov 2024 02:44:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-04 15:41:49.462307
- Title: Unpacking the Individual Components of Diffusion Policy
- Title(参考訳): 拡散政策の個々の構成要素を解き放つ
- Authors: Xiu Yuan,
- Abstract要約: 拡散ポリシは、条件付き認知拡散プロセスを通じてロボットの動作シーケンスを生成する。
本稿では拡散政策の5つの重要な要素を要約する。
ManiSkill と Adroit のベンチマークを用いて実験を行い,拡散政策の成功に対する各コンポーネントの貢献を明らかにすることを目的とした。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Imitation Learning presents a promising approach for learning generalizable and complex robotic skills. The recently proposed Diffusion Policy generates robot action sequences through a conditional denoising diffusion process, achieving state-of-the-art performance compared to other imitation learning methods. This paper summarizes five key components of Diffusion Policy: 1) observation sequence input; 2) action sequence execution; 3) receding horizon; 4) U-Net or Transformer network architecture; and 5) FiLM conditioning. By conducting experiments across ManiSkill and Adroit benchmarks, this study aims to elucidate the contribution of each component to the success of Diffusion Policy in various scenarios. We hope our findings will provide valuable insights for the application of Diffusion Policy in future research and industry.
- Abstract(参考訳): 模倣学習は、汎用的で複雑なロボット技術を学ぶための有望なアプローチである。
最近提案された拡散政策は,条件付き復調拡散プロセスを通じてロボットの動作シーケンスを生成し,他の模倣学習法と比較して最先端の性能を達成する。
本稿では拡散政策の5つの重要な要素を要約する。
1) 観察シーケンス入力
2) 動作シーケンスの実行
3) 地平線を後退すること
4)Uネットワーク又はトランスフォーマーネットワークアーキテクチャ
5)FiLMコンディショニング。
ManiSkill と Adroit のベンチマークを用いて実験を行い,様々なシナリオにおける拡散政策の成功に対する各コンポーネントの貢献を明らかにすることを目的とした。
我々は,今後の研究・産業における拡散政策の適用について,貴重な知見を得られることを願っている。
関連論文リスト
- ActionDiffusion: An Action-aware Diffusion Model for Procedure Planning in Instructional Videos [10.180115984765582]
ActionDiffusionは、講義ビデオにおけるプロシージャ計画のための新しい拡散モデルである。
本手法は,行動間の時間的依存関係の学習と拡散過程における行動計画の認知を統一する。
論文 参考訳(メタデータ) (2024-03-13T14:54:04Z) - DiffAIL: Diffusion Adversarial Imitation Learning [32.90853955228524]
模倣学習は、現実世界の意思決定タスクにおける報酬関数の定義問題を解決することを目的としている。
拡散逆模倣学習法(DiffAIL)を提案する。
提案手法は最先端の性能を達成し、2つのベンチマークタスクにおける専門家の実証をはるかに上回っている。
論文 参考訳(メタデータ) (2023-12-11T12:53:30Z) - Exploring Iterative Refinement with Diffusion Models for Video Grounding [17.435735275438923]
ビデオグラウンドイングは、所定の文クエリに対応する未編集ビデオにおいて、ターゲットモーメントをローカライズすることを目的としている。
条件生成タスクとしてビデオグラウンドを定式化する拡散モデルを用いた新しいフレームワークであるDiffusionVGを提案する。
論文 参考訳(メタデータ) (2023-10-26T07:04:44Z) - Crossway Diffusion: Improving Diffusion-based Visuomotor Policy via
Self-supervised Learning [42.009856923352864]
拡散モデルは、シーケンス・モデリング方式で行動的クローニングに採用されている。
拡散に基づくビジュモータポリシー学習の簡易かつ効果的な手法であるクロスウェイ拡散を提案する。
シミュレーションおよび実世界のロボット作業におけるクロスウェイ拡散の有効性を実証した。
論文 参考訳(メタデータ) (2023-07-04T17:59:29Z) - Isolation and Impartial Aggregation: A Paradigm of Incremental Learning
without Interference [61.11137714507445]
本稿では,インクリメンタルラーニングの段階におけるパフォーマンスの不均衡について論じる。
ステージアイソレーションに基づくインクリメンタルラーニングフレームワークを提案する。
提案手法を4つの大規模ベンチマークで評価した。
論文 参考訳(メタデータ) (2022-11-29T06:57:48Z) - Instruction Tuning for Few-Shot Aspect-Based Sentiment Analysis [72.9124467710526]
生成的アプローチは、テキストから(1つ以上の)4つの要素を1つのタスクとして抽出するために提案されている。
本稿では,ABSAを解くための統一的なフレームワークと,それに関連するサブタスクを提案する。
論文 参考訳(メタデータ) (2022-10-12T23:38:57Z) - Diffusion Policies as an Expressive Policy Class for Offline
Reinforcement Learning [70.20191211010847]
オフライン強化学習(RL)は、以前に収集した静的データセットを使って最適なポリシーを学ぶことを目的としている。
本稿では,条件付き拡散モデルを用いたディフュージョンQ-ラーニング(Diffusion-QL)を提案する。
本手法はD4RLベンチマークタスクの大部分において最先端の性能を実現することができることを示す。
論文 参考訳(メタデータ) (2022-08-12T09:54:11Z) - Deterministic and Discriminative Imitation (D2-Imitation): Revisiting
Adversarial Imitation for Sample Efficiency [61.03922379081648]
本稿では,敵対的トレーニングやmin-max最適化を必要としない非政治的サンプル効率の手法を提案する。
実験の結果, D2-Imitation はサンプル効率の向上に有効であることが示唆された。
論文 参考訳(メタデータ) (2021-12-11T19:36:19Z) - Tree-Structured Policy based Progressive Reinforcement Learning for
Temporally Language Grounding in Video [128.08590291947544]
非トリミングビデオにおける一時的言語接地は、ビデオ理解における新たな課題である。
ヒトの粗大な意思決定パラダイムにインスパイアされた我々は、新しい木構造政策に基づくプログレッシブ強化学習フレームワークを定式化した。
論文 参考訳(メタデータ) (2020-01-18T15:08:04Z) - Delving into 3D Action Anticipation from Streaming Videos [99.0155538452263]
アクション予測は、部分的な観察でアクションを認識することを目的としている。
本稿では,いくつかの相補的評価指標を導入し,フレームワイド動作分類に基づく基本モデルを提案する。
また,全動作表現とクラス非依存行動ラベルという2つの側面から補助情報を取り入れたマルチタスク学習戦略についても検討する。
論文 参考訳(メタデータ) (2019-06-15T10:30:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。