Physics-Informed Deep Learning Model for Line-integral Diagnostics Across Fusion Devices
- URL: http://arxiv.org/abs/2412.00087v2
- Date: Wed, 05 Feb 2025 11:35:08 GMT
- Title: Physics-Informed Deep Learning Model for Line-integral Diagnostics Across Fusion Devices
- Authors: Cong Wang, Weizhe Yang, Haiping Wang, Renjie Yang, Jing Li, Zhijun Wang, Xinyao Yu, Yixiong Wei, Xianli Huang, Chenshu Hu, Zhaoyang Liu, Changqing Zou, Zhifeng Zhao,
- Abstract summary: Rapid reconstruction of 2D plasma profiles from line-integral measurements is important in nuclear fusion.
This paper introduces a physics-informed model architecture called Onion, that can enhance the performance of models.
- Score: 20.883836707493213
- License:
- Abstract: Rapid reconstruction of 2D plasma profiles from line-integral measurements is important in nuclear fusion. This paper introduces a physics-informed model architecture called Onion, that can enhance the performance of models and be adapted to various backbone networks. The model under Onion incorporates physical information by a multiplication process and applies the physics-informed loss function according to the principle of line integration. Experimental results demonstrate that the additional input of physical information improves the model's ability, leading to a reduction in the average relative error E_1 between the reconstruction profiles and the target profiles by approximately 52% on synthetic datasets and about 15% on experimental datasets. Furthermore, the implementation of the Softplus activation function in the final two fully connected layers improves model performance. This enhancement results in a reduction in the E_1 by approximately 71% on synthetic datasets and about 27% on experimental datasets. The incorporation of the physics-informed loss function has been shown to correct the model's predictions, bringing the back-projections closer to the actual inputs and reducing the errors associated with inversion algorithms. Besides, we have developed a synthetic data model to generate customized line-integral diagnostic datasets and have also collected soft x-ray diagnostic datasets from EAST and HL-2A. This study achieves reductions in reconstruction errors, and accelerates the development of diagnostic surrogate models in fusion research.
Related papers
- Mitigating Sycophancy in Decoder-Only Transformer Architectures: Synthetic Data Intervention [4.586907225774023]
This research applies synthetic data intervention technology to the decoder-only transformer architecture.
The results show that the SDI training model supports the technology in terms of accuracy rate and sycophancy rate.
arXiv Detail & Related papers (2024-11-15T12:59:46Z) - Development and Comparative Analysis of Machine Learning Models for Hypoxemia Severity Triage in CBRNE Emergency Scenarios Using Physiological and Demographic Data from Medical-Grade Devices [0.0]
Gradient Boosting Models (GBMs) outperformed sequential models in terms of training speed, interpretability, and reliability.
A 5-minute prediction window was chosen for timely intervention, with minute-levels standardizing the data.
This study highlights ML's potential to improve triage and reduce alarm fatigue.
arXiv Detail & Related papers (2024-10-30T23:24:28Z) - DetDiffusion: Synergizing Generative and Perceptive Models for Enhanced Data Generation and Perception [78.26734070960886]
Current perceptive models heavily depend on resource-intensive datasets.
We introduce perception-aware loss (P.A. loss) through segmentation, improving both quality and controllability.
Our method customizes data augmentation by extracting and utilizing perception-aware attribute (P.A. Attr) during generation.
arXiv Detail & Related papers (2024-03-20T04:58:03Z) - Towards Theoretical Understandings of Self-Consuming Generative Models [56.84592466204185]
This paper tackles the emerging challenge of training generative models within a self-consuming loop.
We construct a theoretical framework to rigorously evaluate how this training procedure impacts the data distributions learned by future models.
We present results for kernel density estimation, delivering nuanced insights such as the impact of mixed data training on error propagation.
arXiv Detail & Related papers (2024-02-19T02:08:09Z) - Retrosynthesis prediction enhanced by in-silico reaction data
augmentation [66.5643280109899]
We present RetroWISE, a framework that employs a base model inferred from real paired data to perform in-silico reaction generation and augmentation.
On three benchmark datasets, RetroWISE achieves the best overall performance against state-of-the-art models.
arXiv Detail & Related papers (2024-01-31T07:40:37Z) - Derm-T2IM: Harnessing Synthetic Skin Lesion Data via Stable Diffusion
Models for Enhanced Skin Disease Classification using ViT and CNN [1.0499611180329804]
We aim to incorporate enhanced data transformation techniques by extending the recent success of few-shot learning.
We investigate the impact of incorporating newly generated synthetic data into the training pipeline of state-of-art machine learning models.
arXiv Detail & Related papers (2024-01-10T13:46:03Z) - Robust Learning with Progressive Data Expansion Against Spurious
Correlation [65.83104529677234]
We study the learning process of a two-layer nonlinear convolutional neural network in the presence of spurious features.
Our analysis suggests that imbalanced data groups and easily learnable spurious features can lead to the dominance of spurious features during the learning process.
We propose a new training algorithm called PDE that efficiently enhances the model's robustness for a better worst-group performance.
arXiv Detail & Related papers (2023-06-08T05:44:06Z) - Towards a unified nonlocal, peridynamics framework for the
coarse-graining of molecular dynamics data with fractures [6.478834929962051]
We propose a learning framework to extract a peridynamic model as a mesoscale continuum surrogate from MD simulated material fracture datasets.
Our peridynamics surrogate model can be employed in further prediction tasks with different grid resolutions from training.
arXiv Detail & Related papers (2023-01-11T16:07:17Z) - Deep learning for full-field ultrasonic characterization [7.120879473925905]
This study takes advantage of recent advances in machine learning to establish a physics-based data analytic platform.
Two logics, namely the direct inversion and physics-informed neural networks (PINNs), are explored.
arXiv Detail & Related papers (2023-01-06T05:01:05Z) - An Adversarial Active Sampling-based Data Augmentation Framework for
Manufacturable Chip Design [55.62660894625669]
Lithography modeling is a crucial problem in chip design to ensure a chip design mask is manufacturable.
Recent developments in machine learning have provided alternative solutions in replacing the time-consuming lithography simulations with deep neural networks.
We propose a litho-aware data augmentation framework to resolve the dilemma of limited data and improve the machine learning model performance.
arXiv Detail & Related papers (2022-10-27T20:53:39Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
We propose a probabilistic model called ME-NODE to incorporate (fixed + random) mixed effects for analyzing panel data.
We show that our model can be derived using smooth approximations of SDEs provided by the Wong-Zakai theorem.
We then derive Evidence Based Lower Bounds for ME-NODE, and develop (efficient) training algorithms.
arXiv Detail & Related papers (2022-02-18T22:41:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.