論文の概要: Semi-Supervised Neural Processes for Articulated Object Interactions
- arxiv url: http://arxiv.org/abs/2412.00145v1
- Date: Thu, 28 Nov 2024 21:20:06 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-04 15:41:46.172526
- Title: Semi-Supervised Neural Processes for Articulated Object Interactions
- Title(参考訳): 人工物体相互作用のための半スーパービジョンニューラルプロセス
- Authors: Emily Liu, Michael Noseworthy, Nicholas Roy,
- Abstract要約: 本稿では,少数のオブジェクトのみにラベル付きインタラクションデータが存在するシナリオを対象とした適応型報酬予測モデルであるSemi-Supervised Neural Process (SSNP)を紹介する。
両方のタイプのデータを共同でトレーニングすることで、モデルはより効果的に一般化可能な機能に集中することができる。
SSNPの有効性は、ドアオープンタスクを通じて示され、他の半教師付き手法よりも優れた性能を示し、他の適応型モデルと比較して、わずかなデータしか使用しない。
- 参考スコア(独自算出の注目度): 10.847409934374205
- License:
- Abstract: The scarcity of labeled action data poses a considerable challenge for developing machine learning algorithms for robotic object manipulation. It is expensive and often infeasible for a robot to interact with many objects. Conversely, visual data of objects, without interaction, is abundantly available and can be leveraged for pretraining and feature extraction. However, current methods that rely on image data for pretraining do not easily adapt to task-specific predictions, since the learned features are not guaranteed to be relevant. This paper introduces the Semi-Supervised Neural Process (SSNP): an adaptive reward-prediction model designed for scenarios in which only a small subset of objects have labeled interaction data. In addition to predicting reward labels, the latent-space of the SSNP is jointly trained with an autoencoding objective using passive data from a much larger set of objects. Jointly training with both types of data allows the model to focus more effectively on generalizable features and minimizes the need for extensive retraining, thereby reducing computational demands. The efficacy of SSNP is demonstrated through a door-opening task, leading to better performance than other semi-supervised methods, and only using a fraction of the data compared to other adaptive models.
- Abstract(参考訳): ラベル付きアクションデータの不足は、ロボットオブジェクト操作のための機械学習アルゴリズムを開発する上で大きな課題となる。
高価で、多くの場合、ロボットが多くの物体と対話することは不可能である。
逆に、相互作用のないオブジェクトの視覚データは豊富に利用可能であり、事前学習や特徴抽出に利用することができる。
しかし, 画像データを利用した事前学習手法は, 課題固有の予測に容易に適応できない。
本稿では,少数のオブジェクトのみにラベル付きインタラクションデータが存在するシナリオを対象とした適応型報酬予測モデルであるSemi-Supervised Neural Process (SSNP)を紹介する。
報奨ラベルの予測に加えて、SSNPの潜伏空間は、より大きなオブジェクトの集合からの受動的データを用いて、自動エンコードの対象と共同で訓練される。
両データの共同トレーニングにより、モデルはより効果的に一般化可能な特徴に焦点を合わせ、広範な再トレーニングの必要性を最小限に抑え、計算要求を減らすことができる。
SSNPの有効性は、ドアオープンタスクを通じて示され、他の半教師付き手法よりも優れた性能を示し、他の適応型モデルと比較して、わずかなデータしか使用しない。
関連論文リスト
- LLM-assisted Explicit and Implicit Multi-interest Learning Framework for Sequential Recommendation [50.98046887582194]
本研究では,ユーザの興味を2つのレベル – 行動と意味論 – でモデル化する,明示的で暗黙的な多目的学習フレームワークを提案する。
提案するEIMFフレームワークは,小型モデルとLLMを効果的に組み合わせ,多目的モデリングの精度を向上させる。
論文 参考訳(メタデータ) (2024-11-14T13:00:23Z) - Keypoint Abstraction using Large Models for Object-Relative Imitation Learning [78.92043196054071]
多様なタスクや環境にまたがる新しいオブジェクト構成やインスタンスへの一般化は、ロボット工学において重要な課題である。
キーポイントに基づく表現は、本質的なオブジェクトキャプチャ機能のための簡潔な表現として有効であることが証明されている。
本稿では,タスク関連およびクロスインスタンス整合性キーポイントの自動生成に,大規模な事前学習型視覚言語モデルを活用するフレームワークであるKALMを提案する。
論文 参考訳(メタデータ) (2024-10-30T17:37:31Z) - Distribution-Level Feature Distancing for Machine Unlearning: Towards a Better Trade-off Between Model Utility and Forgetting [4.220336689294245]
本稿では,タスク関連特徴相関を保ちつつ,効率的にインスタンスを破棄する新しい手法である分散レベル特徴分散(DLFD)を提案する。
提案手法は, 特徴分布を忘れ試料と明確に異なるように最適化し, 単一の学習エポック内で有効結果を得る。
論文 参考訳(メタデータ) (2024-09-23T06:51:10Z) - Task-Aware Machine Unlearning and Its Application in Load Forecasting [4.00606516946677]
本稿では、すでに訓練済みの予測器に対するデータセットの一部の影響を除去するために特別に設計された機械学習の概念を紹介する。
局所モデルパラメータ変化の感度を影響関数とサンプル再重み付けを用いて評価することにより,性能認識アルゴリズムを提案する。
リアルな負荷データセットを用いて,線形,CNN,Mixerベースの負荷予測器上で,未学習アルゴリズムを検証した。
論文 参考訳(メタデータ) (2023-08-28T08:50:12Z) - Efficient and Robust Training of Dense Object Nets for Multi-Object
Robot Manipulation [8.321536457963655]
我々はDense Object Nets(DON)の堅牢で効率的なトレーニングのためのフレームワークを提案する。
本研究は,多目的データを用いた学習に重点を置いている。
実世界のロボットによる把握作業において,提案手法の頑健さと精度を実証する。
論文 参考訳(メタデータ) (2022-06-24T08:24:42Z) - INVIGORATE: Interactive Visual Grounding and Grasping in Clutter [56.00554240240515]
INVIGORATEは、自然言語で人間と対話し、特定の物体をクラッタで把握するロボットシステムである。
我々は、物体検出、視覚的接地、質問生成、OBR検出と把握のために、別々のニューラルネットワークを訓練する。
我々は、学習したニューラルネットワークモジュールを統合する、部分的に観測可能なマルコフ決定プロセス(POMDP)を構築します。
論文 参考訳(メタデータ) (2021-08-25T07:35:21Z) - Model-agnostic and Scalable Counterfactual Explanations via
Reinforcement Learning [0.5729426778193398]
本稿では,最適化手順をエンドツーエンドの学習プロセスに変換する深層強化学習手法を提案する。
実世界のデータを用いた実験により,本手法はモデルに依存しず,モデル予測からのフィードバックのみに依存することがわかった。
論文 参考訳(メタデータ) (2021-06-04T16:54:36Z) - Parrot: Data-Driven Behavioral Priors for Reinforcement Learning [79.32403825036792]
そこで本研究では,実験で得られた複雑なインプット・アウトプット関係を事前に学習する手法を提案する。
RLエージェントが新規な動作を試す能力を阻害することなく、この学習が新しいタスクを迅速に学習するのにどのように役立つかを示す。
論文 参考訳(メタデータ) (2020-11-19T18:47:40Z) - A Trainable Optimal Transport Embedding for Feature Aggregation and its
Relationship to Attention [96.77554122595578]
固定サイズのパラメータ化表現を導入し、与えられた入力セットから、そのセットとトレーニング可能な参照の間の最適な輸送計画に従って要素を埋め込み、集約する。
我々のアプローチは大規模なデータセットにスケールし、参照のエンドツーエンドのトレーニングを可能にすると同時に、計算コストの少ない単純な教師なし学習メカニズムも提供する。
論文 参考訳(メタデータ) (2020-06-22T08:35:58Z) - Learning Predictive Models From Observation and Interaction [137.77887825854768]
世界との相互作用から予測モデルを学ぶことで、ロボットのようなエージェントが世界がどのように働くかを学ぶことができる。
しかし、複雑なスキルのダイナミクスを捉えるモデルを学ぶことは大きな課題である。
本研究では,人間などの他のエージェントの観察データを用いて,トレーニングセットを増強する手法を提案する。
論文 参考訳(メタデータ) (2019-12-30T01:10:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。