論文の概要: Strategic Application of AIGC for UAV Trajectory Design: A Channel Knowledge Map Approach
- arxiv url: http://arxiv.org/abs/2412.00386v1
- Date: Sat, 30 Nov 2024 07:34:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-04 15:46:41.011165
- Title: Strategic Application of AIGC for UAV Trajectory Design: A Channel Knowledge Map Approach
- Title(参考訳): UAV軌道設計におけるAIGCの戦略的応用:チャネル知識マップアプローチ
- Authors: Chiya Zhang, Ting Wang, Rubing Han, Yuanxiang Gong,
- Abstract要約: 無人航空機(UAV)は無線通信にますます利用されているが、正確なチャネル損失予測は依然として重要な課題である。
本稿では,Channel Knowledge Map (CKM) とUAV軌道設計の効率的な構築に人工知能生成コンテンツ(AIGC)を活用する。
- 参考スコア(独自算出の注目度): 8.561296596002643
- License:
- Abstract: Unmanned Aerial Vehicles (UAVs) are increasingly utilized in wireless communication, yet accurate channel loss prediction remains a significant challenge, limiting resource optimization performance. To address this issue, this paper leverages Artificial Intelligence Generated Content (AIGC) for the efficient construction of Channel Knowledge Maps (CKM) and UAV trajectory design. Given the time-consuming nature of channel data collection, AI techniques are employed in a Wasserstein Generative Adversarial Network (WGAN) to extract environmental features and augment the data. Experiment results demonstrate the effectiveness of the proposed framework in improving CKM construction accuracy. Moreover, integrating CKM into UAV trajectory planning reduces channel gain uncertainty, demonstrating its potential to enhance wireless communication efficiency.
- Abstract(参考訳): 無人航空機(UAV)は、無線通信においてますます利用されつつあるが、正確なチャネル損失予測は、資源最適化性能を制限する重要な課題である。
この問題に対処するために,本稿では,Channel Knowledge Maps(CKM)とUAV軌道設計の効率的な構築にAIGC(Artificial Intelligence Generated Content)を活用する。
チャネルデータ収集の時間的特性を考慮すると、AI技術はWasserstein Generative Adversarial Network(WGAN)で環境特性の抽出とデータの拡張に使用されている。
実験結果から, CKM 構築精度向上のためのフレームワークの有効性が示された。
さらに、CKMをUAV軌道計画に統合することにより、チャネルゲインの不確実性を低減し、無線通信効率を高める可能性を示す。
関連論文リスト
- Movable Antenna-Equipped UAV for Data Collection in Backscatter Sensor Networks: A Deep Reinforcement Learning-based Approach [10.115361454176773]
無人航空機(UAV)は遠隔後方散乱装置(BD)からの柔軟なデータ収集を可能にする
指向性と柔軟性の高い指向性移動アンテナ(MA)をUAVに搭載することを検討する。
我々は,UAVと各BD間の方位角と距離を用いた深部強化学習(DRL)に基づく戦略を開発し,エージェントの観測空間を簡素化する。
論文 参考訳(メタデータ) (2024-11-21T09:34:48Z) - Integrated Sensing, Computation, and Communication for UAV-assisted
Federated Edge Learning [52.7230652428711]
フェデレーションエッジ学習(FEEL)は、エッジデバイスとサーバ間の定期的な通信を通じて、プライバシ保護モデルトレーニングを可能にする。
無人航空機(UAV)搭載エッジデバイスは、効率的なデータ収集における柔軟性と移動性のため、FEELにとって特に有利である。
論文 参考訳(メタデータ) (2023-06-05T16:01:33Z) - Joint Optimization of Deployment and Trajectory in UAV and IRS-Assisted
IoT Data Collection System [25.32139119893323]
無人航空機(UAV)は多くのモノのインターネット(IoT)システムに適用できる。
UAV-IoT無線チャネルは、時には木や高層建築物によってブロックされることがある。
本稿では,UAVの展開と軌道を最適化することで,システムのエネルギー消費を最小化することを目的とする。
論文 参考訳(メタデータ) (2022-10-27T06:27:40Z) - Trajectory Design for UAV-Based Internet-of-Things Data Collection: A
Deep Reinforcement Learning Approach [93.67588414950656]
本稿では,無人航空機(UAV)による3D環境におけるIoT(Internet-of-Things)システムについて検討する。
本稿では,TD3-TDCTMアルゴリズムの完成時間最小化のためのトラジェクトリ設計を提案する。
シミュレーションの結果,従来の3つの非学習ベースライン法よりもTD3-TDCTMアルゴリズムの方が優れていることが示された。
論文 参考訳(メタデータ) (2021-07-23T03:33:29Z) - 3D UAV Trajectory and Data Collection Optimisation via Deep
Reinforcement Learning [75.78929539923749]
無人航空機(UAV)は現在、無線通信におけるネットワーク性能とカバレッジを高めるために配備され始めている。
UAV支援モノのインターネット(IoT)のための最適な資源配分方式を得ることは困難である
本稿では,UAVの最も短い飛行経路に依存しつつ,IoTデバイスから収集したデータ量を最大化しながら,新しいUAV支援IoTシステムを設計する。
論文 参考訳(メタデータ) (2021-06-06T14:08:41Z) - Distributed Conditional Generative Adversarial Networks (GANs) for
Data-Driven Millimeter Wave Communications in UAV Networks [116.94802388688653]
無人航空機(UAV)無線ネットワークにおけるミリ波(mmWave)通信のための,データ駆動型空対地(A2G)チャネル推定手法を提案する。
実効的なチャネル推定手法を開発し、各UAVは、各ビームフォーミング方向に沿って条件付き生成対向ネットワーク(CGAN)を介してスタンドアロンチャネルモデルを訓練することができる。
分散CGANアーキテクチャに基づく協調的なフレームワークを開発し、各UAVがmmWaveチャネルの分布を協調的に学習できるようにする。
論文 参考訳(メタデータ) (2021-02-02T20:56:46Z) - Power Control for a URLLC-enabled UAV system incorporated with DNN-Based
Channel Estimation [82.16169603954663]
この手紙は、ディープニューラルネットワーク(DNN)に基づくチャネル推定を組み込んだ超信頼性低遅延通信(URLLC)有効無人航空機(UAV)システムの電力制御に関するものである。
論文 参考訳(メタデータ) (2020-11-14T02:31:04Z) - Simultaneous Navigation and Radio Mapping for Cellular-Connected UAV
with Deep Reinforcement Learning [46.55077580093577]
空のUAVに対して、ユビキタスな3Dコミュニケーションを実現するには、新しい課題だ。
本稿では,UAVの制御可能な移動性を利用して航法・軌道を設計する新しい航法手法を提案する。
そこで我々は,UAVの信号計測を深部Qネットワークのトレーニングに用いるSNARM (Concurrent Navigation and Radio Mapping) という新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2020-03-17T08:16:14Z) - Data Freshness and Energy-Efficient UAV Navigation Optimization: A Deep
Reinforcement Learning Approach [88.45509934702913]
我々は、移動基地局(BS)が配備される複数の無人航空機(UAV)のナビゲーションポリシーを設計する。
我々は、地上BSにおけるデータの鮮度を確保するために、エネルギーや情報年齢(AoI)の制約などの異なる文脈情報を組み込んだ。
提案したトレーニングモデルを適用することで、UAV-BSに対する効果的なリアルタイム軌道ポリシーは、時間とともに観測可能なネットワーク状態をキャプチャする。
論文 参考訳(メタデータ) (2020-02-21T07:29:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。