論文の概要: Few-Shot Domain Adaptation for Named-Entity Recognition via Joint Constrained k-Means and Subspace Selection
- arxiv url: http://arxiv.org/abs/2412.00426v1
- Date: Sat, 30 Nov 2024 10:52:24 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-04 15:47:09.038463
- Title: Few-Shot Domain Adaptation for Named-Entity Recognition via Joint Constrained k-Means and Subspace Selection
- Title(参考訳): 制約付きk-平均と部分空間選択による名前付きエンティティ認識のためのFew-Shot領域適応
- Authors: Ayoub Hammal, Benno Uthayasooriyar, Caio Corro,
- Abstract要約: ラベル付きデータセットと大量のラベル付きデータを組み合わせた弱教師付きアルゴリズムを提案する。
このフレームワークは、いくつかの英語データセット上で、数ショットのNERで最先端の結果を達成する。
- 参考スコア(独自算出の注目度): 6.390468088226495
- License:
- Abstract: Named-entity recognition (NER) is a task that typically requires large annotated datasets, which limits its applicability across domains with varying entity definitions. This paper addresses few-shot NER, aiming to transfer knowledge to new domains with minimal supervision. Unlike previous approaches that rely solely on limited annotated data, we propose a weakly supervised algorithm that combines small labeled datasets with large amounts of unlabeled data. Our method extends the k-means algorithm with label supervision, cluster size constraints and domain-specific discriminative subspace selection. This unified framework achieves state-of-the-art results in few-shot NER on several English datasets.
- Abstract(参考訳): Named-entity Recognition (NER) は、通常、大きなアノテーション付きデータセットを必要とするタスクである。
本稿では,最小限の監督力で知識を新しいドメインに伝達することを目的とした,数発のNERについて述べる。
注釈付きデータにのみ依存する従来のアプローチとは異なり、小さなラベル付きデータセットと大量のラベル付きデータを組み合わせた弱教師付きアルゴリズムを提案する。
提案手法は,ラベル管理,クラスタサイズ制約,ドメイン固有部分空間選択によるk-meansアルゴリズムを拡張した。
この統合されたフレームワークは、いくつかの英語データセット上で、数ショットのNERで最先端の結果を達成する。
関連論文リスト
- Label Alignment and Reassignment with Generalist Large Language Model for Enhanced Cross-Domain Named Entity Recognition [0.0]
ドメイン間の名前付きエンティティ認識は、ほとんどのNERメソッドで依然として課題となっている。
この問題に対処するため,ラベルアライメントと再割り当てアプローチ,すなわちLARを導入する。
我々は、教師付きシナリオとゼロショットシナリオの両方を含むNERデータセットに対して、幅広い実験を行う。
論文 参考訳(メタデータ) (2024-07-24T15:13:12Z) - Adaptive Betweenness Clustering for Semi-Supervised Domain Adaptation [108.40945109477886]
分類領域アライメントを実現するために,G-ABC (Adaptive Betweenness Clustering) と呼ばれる新しいSSDA手法を提案する。
提案手法は従来のSSDA手法よりも優れており,提案したG-ABCアルゴリズムの優位性を示している。
論文 参考訳(メタデータ) (2024-01-21T09:57:56Z) - A Boundary Offset Prediction Network for Named Entity Recognition [9.885278527023532]
名前付きエンティティ認識(NER)は、名前付きエンティティをテキストで識別し分類することを目的とした自然言語処理の基本的なタスクである。
そこで我々は,NERの新たな手法である境界オフセット予測ネットワーク(BOPN)を提案する。
本手法では,エンティティ型を検出対象として使用する代わりに,エンティティ型とスパン表現を統合して,型認識境界オフセットを生成する。
論文 参考訳(メタデータ) (2023-10-23T05:04:07Z) - Cross-domain Contrastive Learning for Unsupervised Domain Adaptation [108.63914324182984]
教師なしドメイン適応(Unsupervised domain adapt、UDA)は、完全にラベル付けされたソースドメインから異なるラベル付けされていないターゲットドメインに学習した知識を転送することを目的としている。
対照的な自己教師型学習に基づいて、トレーニングとテストセット間のドメインの相違を低減するために、機能を整列させます。
論文 参考訳(メタデータ) (2021-06-10T06:32:30Z) - Locate and Label: A Two-stage Identifier for Nested Named Entity
Recognition [9.809157050048375]
名前付きエンティティ認識のための2段階エンティティ識別子を提案する。
まず、シードスパンのフィルタリングと境界回帰によってスパン提案を生成し、エンティティの特定を行い、それに対応するカテゴリで境界調整スパン提案をラベル付けする。
本手法は,訓練中のエンティティの境界情報と部分マッチングスパンを効果的に活用する。
論文 参考訳(メタデータ) (2021-05-14T12:52:34Z) - Select, Label, and Mix: Learning Discriminative Invariant Feature
Representations for Partial Domain Adaptation [55.73722120043086]
部分領域適応のための識別的不変特徴表現を学習するための「選択、ラベル、混合(SLM)」フレームワークを開発した。
まず, 正の移動を避けるために, 外部からのサンプルを自動的にフィルタする, 単純で効率的な「選択」モジュールを提案する。
次に、「ラベル」モジュールは、ラベル付きソースドメインデータと生成されたターゲットドメインの擬似ラベルの両方を用いて分類器を反復的に訓練し、潜在空間の識別性を高める。
論文 参考訳(メタデータ) (2020-12-06T19:29:32Z) - Discriminative Cross-Domain Feature Learning for Partial Domain
Adaptation [70.45936509510528]
部分的なドメイン適応は、より大きく多様なソースドメインからの知識を、より少ないクラス数でより小さなターゲットドメインに適応させることを目的としています。
ドメイン適応の最近の実践は、ターゲットドメインの擬似ラベルを組み込むことで、効果的な特徴を抽出する。
ターゲットデータを少数のソースデータのみにアライメントすることが不可欠である。
論文 参考訳(メタデータ) (2020-08-26T03:18:53Z) - Domain Adaptation with Auxiliary Target Domain-Oriented Classifier [115.39091109079622]
ドメイン適応は、知識をラベルリッチだが異質なドメインからラベルケアドメインに転送することを目的としている。
最も一般的なSSLテクニックの1つは、ラベルのない各データに擬似ラベルを割り当てる擬似ラベル付けである。
我々はAuxiliary Target Domain-Oriented (ATDOC) と呼ばれる新しい擬似ラベリングフレームワークを提案する。
ATDOCは、ターゲットデータのみのための補助分類器を導入してバイアスを軽減し、擬似ラベルの品質を向上させる。
論文 参考訳(メタデータ) (2020-07-08T15:01:35Z) - Inductive Unsupervised Domain Adaptation for Few-Shot Classification via
Clustering [16.39667909141402]
ショットの分類は、多様なドメインに適応する必要がある場合、苦労する傾向があります。
本稿では、ClusteringによるFew-shot分類のためのドメイン適応性能を改善するためのフレームワークDaFeCを紹介する。
提案手法は, 絶対利得(分類精度)が4.95%, 9.55%, 3.99%, 11.62%であった。
論文 参考訳(メタデータ) (2020-06-23T08:17:48Z) - Low-Budget Label Query through Domain Alignment Enforcement [48.06803561387064]
我々は低予算ラベルクエリと呼ばれる新しい問題に取り組む。
まず、ソースとターゲットドメインの整合性を改善するために、Unsupervised Domain Adaptation (UDA) 法を改善します。
そこで我々は,予測整合分布の均一サンプリングに基づく簡易かつ効果的な選択法を提案する。
論文 参考訳(メタデータ) (2020-01-01T16:52:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。