Exact decomposition of non-Markovian dynamics in open quantum systems
- URL: http://arxiv.org/abs/2412.00450v1
- Date: Sat, 30 Nov 2024 11:53:36 GMT
- Title: Exact decomposition of non-Markovian dynamics in open quantum systems
- Authors: Mariia Ivanchenkoa, Peter L. Walters, Fei Wang,
- Abstract summary: We map the exact non-Markovian propagator to the generalized Lindblad form.
The understanding of the non-Markovian contribution points to the possibility of leveraging non-Markovianity for quantum control.
- Score: 5.19702850808286
- License:
- Abstract: In this work, we developed a rigorous procedure for mapping the exact non-Markovian propagator to the generalized Lindblad form. It allows us to extract the negative decay rate that is the indicator of the non-Markovian effect. As a consequence, we can investigate the influence of the non-Markovian bath on the system's properties such as coherence and equilibrium state distribution. The understanding of the non-Markovian contribution to the dynamical process points to the possibility of leveraging non-Markovianity for quantum control.
Related papers
- Dynamical signatures of non-Markovianity in a dissipative-driven qubit [0.0]
We investigate signatures of non-Markovianity in the dynamics of a periodically-driven qubit coupled to a bosonic environment.
Non-Markovian features are quantified by comparing on an equal footing the predictions from diverse and complementary approaches to quantum dissipation.
arXiv Detail & Related papers (2024-01-17T15:58:50Z) - Exploring the Robustness of stabilizing controls for stochastic quantum evolutions [1.6590638305972631]
We analyze and bound the effect of modeling errors on the stabilization of pure states or subspaces for quantum evolutions.
Different approaches are used for open-loop and feedback control protocols.
arXiv Detail & Related papers (2023-11-08T02:03:01Z) - Dynamically Emergent Quantum Thermodynamics: Non-Markovian Otto Cycle [49.1574468325115]
We revisit the thermodynamic behavior of the quantum Otto cycle with a focus on memory effects and strong system-bath couplings.
Our investigation is based on an exact treatment of non-Markovianity by means of an exact quantum master equation.
arXiv Detail & Related papers (2023-08-18T11:00:32Z) - Distillation of quantum non-Markovianity [0.0]
Non-Markovianty of open quantum systems dynamics is a physically relevant property which is usually associated with the backflow of (quantum) information.
We investigate how non-Markovianity for qubit dynamics can be distilled when many copies of the channels are used, possibly allowing for a stronger effect on the backflow of information.
arXiv Detail & Related papers (2023-08-10T22:33:23Z) - Entanglement and localization in long-range quadratic Lindbladians [49.1574468325115]
Signatures of localization have been observed in condensed matter and cold atomic systems.
We propose a model of one-dimensional chain of non-interacting, spinless fermions coupled to a local ensemble of baths.
We show that the steady state of the system undergoes a localization entanglement phase transition by tuning $p$ which remains stable in the presence of coherent hopping.
arXiv Detail & Related papers (2023-03-13T12:45:25Z) - Diagrammatic method for many-body non-Markovian dynamics: memory effects
and entanglement transitions [0.0]
We study the quantum dynamics of a many-body system subject to coherent evolution and coupled to a non-Markovian bath.
We propose a technique to unravel the non-Markovian dynamics in terms of quantum jumps.
arXiv Detail & Related papers (2023-02-21T09:42:02Z) - Sufficient condition for gapless spin-boson Lindbladians, and its
connection to dissipative time-crystals [64.76138964691705]
We discuss a sufficient condition for gapless excitations in the Lindbladian master equation for collective spin-boson systems.
We argue that gapless modes can lead to persistent dynamics in the spin observables with the possible formation of dissipative time-crystals.
arXiv Detail & Related papers (2022-09-26T18:34:59Z) - Preserving quantum correlations and coherence with non-Markovianity [50.591267188664666]
We demonstrate the usefulness of non-Markovianity for preserving correlations and coherence in quantum systems.
For covariant qubit evolutions, we show that non-Markovianity can be used to preserve quantum coherence at all times.
arXiv Detail & Related papers (2021-06-25T11:52:51Z) - Time-Dependent Dephasing and Quantum Transport [68.8204255655161]
We show that non-Markovian dephasing assisted transport manifests only in the non-symmetric configuration.
We find similar results by considering a controllable and experimentally implementable system.
arXiv Detail & Related papers (2021-02-20T22:44:08Z) - Non-equilibrium non-Markovian steady-states in open quantum many-body
systems: Persistent oscillations in Heisenberg quantum spin chains [68.8204255655161]
We investigate the effect of a non-Markovian, structured reservoir on an open Heisenberg spin chain.
We establish a coherent self-feedback mechanism as the reservoir couples frequency-dependent to the spin chain.
arXiv Detail & Related papers (2020-06-05T09:16:28Z) - Irreversibility mitigation in unital non-Markovian quantum evolutions [5.8010446129208155]
We study the behavior of the entropy production in open quantum systems undergoing unital non-Markovian dynamics.
Although the dynamics of the system is irreversible, our result may be interpreted as a transient tendency towards reversibility.
arXiv Detail & Related papers (2020-04-09T16:04:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.