Exploring the Robustness of stabilizing controls for stochastic quantum evolutions
- URL: http://arxiv.org/abs/2311.04428v2
- Date: Thu, 26 Sep 2024 12:00:41 GMT
- Title: Exploring the Robustness of stabilizing controls for stochastic quantum evolutions
- Authors: Weichao Liang, Kentaro Ohki, Francesco Ticozzi,
- Abstract summary: We analyze and bound the effect of modeling errors on the stabilization of pure states or subspaces for quantum evolutions.
Different approaches are used for open-loop and feedback control protocols.
- Score: 1.6590638305972631
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this work we analyze and bound the effect of modeling errors on the stabilization of pure states or subspaces for quantum stochastic evolutions. Different approaches are used for open-loop and feedback control protocols. For both, we highlight the key role of dynamical invariance of the target: if the perturbation preserves invariance, it is possible to prove that it also preserves its attractivity, under some additional assumptions. In addition, we prove boundedness in mean of the solutions of perturbed systems under open-loop protocols. For the feedback strategies, in the general case without assumptions on invariance, we provide bounds on the perturbation effect in expectation and in probability, as well as specific bounds for non-demolition nominal systems.
Related papers
- Distributionally Robust Policy and Lyapunov-Certificate Learning [13.38077406934971]
Key challenge in designing controllers with stability guarantees for uncertain systems is the accurate determination of and adaptation to shifts in model parametric uncertainty during online deployment.
We tackle this with a novel distributionally robust formulation of the Lyapunov derivative chance constraint ensuring a monotonic decrease of the Lyapunov certificate.
We show that, for the resulting closed-loop system, the global stability of its equilibrium can be certified with high confidence, even with Out-of-Distribution uncertainties.
arXiv Detail & Related papers (2024-04-03T18:57:54Z) - State Estimation and Control for Stochastic Quantum Dynamics with Homodyne Measurement: Stabilizing Qubits under Uncertainty [1.4811951486536687]
This paper introduces a Lyapunov-based control approach with homodyne measurement.
We study two filtering approaches: (i) the traditional quantum filtering and (ii) a modified version of the extended Kalman filtering.
arXiv Detail & Related papers (2024-03-09T22:29:00Z) - Model-Based Uncertainty in Value Functions [89.31922008981735]
We focus on characterizing the variance over values induced by a distribution over MDPs.
Previous work upper bounds the posterior variance over values by solving a so-called uncertainty Bellman equation.
We propose a new uncertainty Bellman equation whose solution converges to the true posterior variance over values.
arXiv Detail & Related papers (2023-02-24T09:18:27Z) - Probabilities Are Not Enough: Formal Controller Synthesis for Stochastic
Dynamical Models with Epistemic Uncertainty [68.00748155945047]
Capturing uncertainty in models of complex dynamical systems is crucial to designing safe controllers.
Several approaches use formal abstractions to synthesize policies that satisfy temporal specifications related to safety and reachability.
Our contribution is a novel abstraction-based controller method for continuous-state models with noise, uncertain parameters, and external disturbances.
arXiv Detail & Related papers (2022-10-12T07:57:03Z) - Decimation technique for open quantum systems: a case study with
driven-dissipative bosonic chains [62.997667081978825]
Unavoidable coupling of quantum systems to external degrees of freedom leads to dissipative (non-unitary) dynamics.
We introduce a method to deal with these systems based on the calculation of (dissipative) lattice Green's function.
We illustrate the power of this method with several examples of driven-dissipative bosonic chains of increasing complexity.
arXiv Detail & Related papers (2022-02-15T19:00:09Z) - Optimal variance-reduced stochastic approximation in Banach spaces [114.8734960258221]
We study the problem of estimating the fixed point of a contractive operator defined on a separable Banach space.
We establish non-asymptotic bounds for both the operator defect and the estimation error.
arXiv Detail & Related papers (2022-01-21T02:46:57Z) - Robust Control Performance for Open Quantum Systems [0.0]
A formalism is developed to measure performance based on the transmission of a dynamic perturbation or initial state preparation error.
A difficulty arising from the singularity of the closed-loop Bloch equations for the quantum state is overcome by introducing the #-inversion lemma.
Additional difficulties occur when symmetry gives rise to multiple open-loop poles, which under symmetry-breaking unfold into single eigenvalues.
arXiv Detail & Related papers (2020-08-31T15:51:22Z) - Quantum backflow in the presence of a purely transmitting defect [91.3755431537592]
We analyse the quantum backflow effect and extend it, as a limiting constraint to its spatial extent, for scattering situations.
We make the analysis compatible with conservation laws.
arXiv Detail & Related papers (2020-07-14T22:59:25Z) - Loss-of-entanglement prediction of a controlled-PHASE gate in the
framework of steepest-entropy-ascent quantum thermodynamics [0.0]
We show that the loss of entanglement predicted is related to the irreversibilities in a nontrivial way.
The results provide a means for understanding this loss in quantum protocols from a nonequilibrium thermodynamic standpoint.
arXiv Detail & Related papers (2020-06-10T22:26:52Z) - GenDICE: Generalized Offline Estimation of Stationary Values [108.17309783125398]
We show that effective estimation can still be achieved in important applications.
Our approach is based on estimating a ratio that corrects for the discrepancy between the stationary and empirical distributions.
The resulting algorithm, GenDICE, is straightforward and effective.
arXiv Detail & Related papers (2020-02-21T00:27:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.