Jailbreak Large Vision-Language Models Through Multi-Modal Linkage
- URL: http://arxiv.org/abs/2412.00473v5
- Date: Wed, 18 Jun 2025 07:33:15 GMT
- Title: Jailbreak Large Vision-Language Models Through Multi-Modal Linkage
- Authors: Yu Wang, Xiaofei Zhou, Yichen Wang, Geyuan Zhang, Tianxing He,
- Abstract summary: We propose a novel jailbreak attack framework: Multi-Modal (MML) Attack. Drawing inspiration from cryptography, MML utilizes an encryption-decryption process across text and image modalities to mitigate over-exposure of malicious information.<n>Experiments demonstrate MML's effectiveness. Specifically, MML jailbreaks GPT-4o with attack success rates of 97.80% on SafeBench, 98.81% on MM-SafeBench and 99.07% on HADES-Dataset.
- Score: 14.025750623315561
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the significant advancement of Large Vision-Language Models (VLMs), concerns about their potential misuse and abuse have grown rapidly. Previous studies have highlighted VLMs' vulnerability to jailbreak attacks, where carefully crafted inputs can lead the model to produce content that violates ethical and legal standards. However, existing methods struggle against state-of-the-art VLMs like GPT-4o, due to the over-exposure of harmful content and lack of stealthy malicious guidance. In this work, we propose a novel jailbreak attack framework: Multi-Modal Linkage (MML) Attack. Drawing inspiration from cryptography, MML utilizes an encryption-decryption process across text and image modalities to mitigate over-exposure of malicious information. To align the model's output with malicious intent covertly, MML employs a technique called "evil alignment", framing the attack within a video game production scenario. Comprehensive experiments demonstrate MML's effectiveness. Specifically, MML jailbreaks GPT-4o with attack success rates of 97.80% on SafeBench, 98.81% on MM-SafeBench and 99.07% on HADES-Dataset. Our code is available at https://github.com/wangyu-ovo/MML.
Related papers
- LLMs Caught in the Crossfire: Malware Requests and Jailbreak Challenges [70.85114705489222]
We propose MalwareBench, a benchmark dataset containing 3,520 jailbreaking prompts for malicious code-generation.<n>M MalwareBench is based on 320 manually crafted malicious code generation requirements, covering 11 jailbreak methods and 29 code functionality categories.<n>Experiments show that mainstream LLMs exhibit limited ability to reject malicious code-generation requirements, and the combination of multiple jailbreak methods further reduces the model's security capabilities.
arXiv Detail & Related papers (2025-06-09T12:02:39Z) - Implicit Jailbreak Attacks via Cross-Modal Information Concealment on Vision-Language Models [20.99874786089634]
Previous jailbreak attacks often inject malicious instructions from text into less aligned modalities, such as vision.<n>We propose a novel implicit jailbreak framework termed IJA that stealthily embeds malicious instructions into images via at least significant bit steganography.<n>On commercial models like GPT-4o and Gemini-1.5 Pro, our method achieves attack success rates of over 90% using an average of only 3 queries.
arXiv Detail & Related papers (2025-05-22T09:34:47Z) - FC-Attack: Jailbreaking Multimodal Large Language Models via Auto-Generated Flowcharts [20.323340637767327]
Multimodal Large Language Models (MLLMs) have become powerful and widely adopted in some practical applications.<n>Recent research has revealed their vulnerability to multimodal jailbreak attacks, whereby the model can be induced to generate harmful content.<n>We propose a jailbreak attack method based on auto-generated flowcharts, FC-Attack.
arXiv Detail & Related papers (2025-02-28T13:59:11Z) - Layer-Level Self-Exposure and Patch: Affirmative Token Mitigation for Jailbreak Attack Defense [55.77152277982117]
We introduce Layer-AdvPatcher, a methodology designed to defend against jailbreak attacks.
We use an unlearning strategy to patch specific layers within large language models through self-augmented datasets.
Our framework reduces the harmfulness and attack success rate of jailbreak attacks.
arXiv Detail & Related papers (2025-01-05T19:06:03Z) - IDEATOR: Jailbreaking Large Vision-Language Models Using Themselves [67.30731020715496]
We propose a novel jailbreak method named IDEATOR, which autonomously generates malicious image-text pairs for black-box jailbreak attacks.
IDEATOR uses a VLM to create targeted jailbreak texts and pairs them with jailbreak images generated by a state-of-the-art diffusion model.
It achieves a 94% success rate in jailbreaking MiniGPT-4 with an average of only 5.34 queries, and high success rates of 82%, 88%, and 75% when transferred to LLaVA, InstructBLIP, and Meta's Chameleon.
arXiv Detail & Related papers (2024-10-29T07:15:56Z) - Deciphering the Chaos: Enhancing Jailbreak Attacks via Adversarial Prompt Translation [71.92055093709924]
We propose a novel method that "translates" garbled adversarial prompts into coherent and human-readable natural language adversarial prompts.
It also offers a new approach to discovering effective designs for jailbreak prompts, advancing the understanding of jailbreak attacks.
Our method achieves over 90% attack success rates against Llama-2-Chat models on AdvBench, despite their outstanding resistance to jailbreak attacks.
arXiv Detail & Related papers (2024-10-15T06:31:04Z) - BaThe: Defense against the Jailbreak Attack in Multimodal Large Language Models by Treating Harmful Instruction as Backdoor Trigger [67.75420257197186]
In this work, we propose $textbfBaThe, a simple yet effective jailbreak defense mechanism.
Jailbreak backdoor attack uses harmful instructions combined with manually crafted strings as triggers to make the backdoored model generate prohibited responses.
We assume that harmful instructions can function as triggers, and if we alternatively set rejection responses as the triggered response, the backdoored model then can defend against jailbreak attacks.
arXiv Detail & Related papers (2024-08-17T04:43:26Z) - Red Teaming GPT-4V: Are GPT-4V Safe Against Uni/Multi-Modal Jailbreak Attacks? [39.87609532392292]
This work builds a comprehensive jailbreak evaluation dataset with 1445 harmful questions covering 11 different safety policies.
Based on this dataset, extensive red-teaming experiments are conducted on 11 different Large Language Models (LLMs) and Multimodal Large Language Models (MLLMs)
We find that GPT4 and GPT-4V demonstrate better robustness against jailbreak attacks compared to open-source LLMs and MLLMs.
arXiv Detail & Related papers (2024-04-04T12:38:14Z) - Images are Achilles' Heel of Alignment: Exploiting Visual Vulnerabilities for Jailbreaking Multimodal Large Language Models [107.88745040504887]
We study the harmlessness alignment problem of multimodal large language models (MLLMs)
Inspired by this, we propose a novel jailbreak method named HADES, which hides and amplifies the harmfulness of the malicious intent within the text input.
Experimental results show that HADES can effectively jailbreak existing MLLMs, which achieves an average Attack Success Rate (ASR) of 90.26% for LLaVA-1.5 and 71.60% for Gemini Pro Vision.
arXiv Detail & Related papers (2024-03-14T18:24:55Z) - Jailbreaking Attack against Multimodal Large Language Model [69.52466793164618]
This paper focuses on jailbreaking attacks against multi-modal large language models (MLLMs)
A maximum likelihood-based algorithm is proposed to find an emphimage Jailbreaking Prompt (imgJP)
Our approach exhibits strong model-transferability, as the generated imgJP can be transferred to jailbreak various models.
arXiv Detail & Related papers (2024-02-04T01:29:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.