Density-aware Global-Local Attention Network for Point Cloud Segmentation
- URL: http://arxiv.org/abs/2412.00489v1
- Date: Sat, 30 Nov 2024 14:14:14 GMT
- Title: Density-aware Global-Local Attention Network for Point Cloud Segmentation
- Authors: Chade Li, Pengju Zhang, Yihong Wu,
- Abstract summary: We propose a point cloud segmentation network that fuses local attention based on density perception with global attention.
The core idea is to increase the effective receptive field of each point while reducing the loss of information about small objects in dense areas.
Experiments on point cloud data obtained from complex real-world scenes filled with tiny objects also validate the strong segmentation capability of our method.
- Score: 3.615396917221689
- License:
- Abstract: 3D point cloud segmentation has a wide range of applications in areas such as autonomous driving, augmented reality, virtual reality and digital twins. The point cloud data collected in real scenes often contain small objects and categories with small sample sizes, which are difficult to handle by existing networks. In this regard, we propose a point cloud segmentation network that fuses local attention based on density perception with global attention. The core idea is to increase the effective receptive field of each point while reducing the loss of information about small objects in dense areas. Specifically, we divide different sized windows for local areas with different densities to compute attention within the window. Furthermore, we consider each local area as an independent token for the global attention of the entire input. A category-response loss is also proposed to balance the processing of different categories and sizes of objects. In particular, we set up an additional fully connected layer in the middle of the network for prediction of the presence of object categories, and construct a binary cross-entropy loss to respond to the presence of categories in the scene. In experiments, our method achieves competitive results in semantic segmentation and part segmentation tasks on several publicly available datasets. Experiments on point cloud data obtained from complex real-world scenes filled with tiny objects also validate the strong segmentation capability of our method for small objects as well as small sample categories.
Related papers
- One for All: Multi-Domain Joint Training for Point Cloud Based 3D Object Detection [71.78795573911512]
We propose textbfOneDet3D, a universal one-for-all model that addresses 3D detection across different domains.
We propose the domain-aware in scatter and context, guided by a routing mechanism, to address the data interference issue.
The fully sparse structure and anchor-free head further accommodate point clouds with significant scale disparities.
arXiv Detail & Related papers (2024-11-03T14:21:56Z) - Collect-and-Distribute Transformer for 3D Point Cloud Analysis [82.03517861433849]
We propose a new transformer network equipped with a collect-and-distribute mechanism to communicate short- and long-range contexts of point clouds.
Results show the effectiveness of the proposed CDFormer, delivering several new state-of-the-art performances on point cloud classification and segmentation tasks.
arXiv Detail & Related papers (2023-06-02T03:48:45Z) - LACV-Net: Semantic Segmentation of Large-Scale Point Cloud Scene via
Local Adaptive and Comprehensive VLAD [13.907586081922345]
We propose an end-to-end deep neural network called LACV-Net for large-scale point cloud semantic segmentation.
The proposed network contains three main components: 1) a local adaptive feature augmentation module (LAFA) to adaptively learn the similarity of centroids and neighboring points to augment the local context; 2) a comprehensive VLAD module that fuses local features with multi-layer, multi-scale, and multi-resolution to represent a comprehensive global description vector; and 3) an aggregation loss function to effectively optimize the segmentation boundaries by constraining the adaptive weight from the LAFA module.
arXiv Detail & Related papers (2022-10-12T02:11:00Z) - CloudAttention: Efficient Multi-Scale Attention Scheme For 3D Point
Cloud Learning [81.85951026033787]
We set transformers in this work and incorporate them into a hierarchical framework for shape classification and part and scene segmentation.
We also compute efficient and dynamic global cross attentions by leveraging sampling and grouping at each iteration.
The proposed hierarchical model achieves state-of-the-art shape classification in mean accuracy and yields results on par with the previous segmentation methods.
arXiv Detail & Related papers (2022-07-31T21:39:15Z) - Learning Open-World Object Proposals without Learning to Classify [110.30191531975804]
We propose a classification-free Object Localization Network (OLN) which estimates the objectness of each region purely by how well the location and shape of a region overlaps with any ground-truth object.
This simple strategy learns generalizable objectness and outperforms existing proposals on cross-category generalization.
arXiv Detail & Related papers (2021-08-15T14:36:02Z) - LRGNet: Learnable Region Growing for Class-Agnostic Point Cloud
Segmentation [19.915593390338337]
This research proposes a learnable region growing method for class-agnostic point cloud segmentation.
The proposed method is able to segment any class of objects using a single deep neural network without any assumptions about their shapes and sizes.
arXiv Detail & Related papers (2021-03-16T15:58:01Z) - Semantic Segmentation for Real Point Cloud Scenes via Bilateral
Augmentation and Adaptive Fusion [38.05362492645094]
Real point cloud scenes can intuitively capture complex surroundings in the real world, but due to 3D data's raw nature, it is very challenging for machine perception.
We concentrate on the essential visual task, semantic segmentation, for large-scale point cloud data collected in reality.
By comparing with state-of-the-art networks on three different benchmarks, we demonstrate the effectiveness of our network.
arXiv Detail & Related papers (2021-03-12T04:13:20Z) - PIG-Net: Inception based Deep Learning Architecture for 3D Point Cloud
Segmentation [0.9137554315375922]
We propose a inception based deep network architecture called PIG-Net, that effectively characterizes the local and global geometric details of the point clouds.
We perform an exhaustive experimental analysis of the PIG-Net architecture on two state-of-the-art datasets.
arXiv Detail & Related papers (2021-01-28T13:27:55Z) - MNEW: Multi-domain Neighborhood Embedding and Weighting for Sparse Point
Clouds Segmentation [1.2380933178502298]
We propose MNEW, including multi-domain neighborhood embedding, and attention weighting based on their geometry distance, feature similarity, and neighborhood sparsity.
MNEW achieves the top performance for sparse point clouds, which is important to the application of LiDAR-based automated driving perception.
arXiv Detail & Related papers (2020-04-05T18:02:07Z) - Spatial Attention Pyramid Network for Unsupervised Domain Adaptation [66.75008386980869]
Unsupervised domain adaptation is critical in various computer vision tasks.
We design a new spatial attention pyramid network for unsupervised domain adaptation.
Our method performs favorably against the state-of-the-art methods by a large margin.
arXiv Detail & Related papers (2020-03-29T09:03:23Z) - SceneEncoder: Scene-Aware Semantic Segmentation of Point Clouds with A
Learnable Scene Descriptor [51.298760338410624]
We propose a SceneEncoder module to impose a scene-aware guidance to enhance the effect of global information.
The module predicts a scene descriptor, which learns to represent the categories of objects existing in the scene.
We also design a region similarity loss to propagate distinguishing features to their own neighboring points with the same label.
arXiv Detail & Related papers (2020-01-24T16:53:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.