Distributed Differentially Private Data Analytics via Secure Sketching
- URL: http://arxiv.org/abs/2412.00497v2
- Date: Wed, 05 Mar 2025 09:59:23 GMT
- Title: Distributed Differentially Private Data Analytics via Secure Sketching
- Authors: Jakob Burkhardt, Hannah Keller, Claudio Orlandi, Chris Schwiegelshohn,
- Abstract summary: We introduce the linear-transformation model, a distributed model of differentially private data analysis.<n>We demonstrate that linear transformations are very useful for differential privacy, allowing for the computation of linear sketches of input data.
- Score: 6.6481808869451715
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce the linear-transformation model, a distributed model of differentially private data analysis. Clients have access to a trusted platform capable of applying a public matrix to their inputs. Such computations can be securely distributed across multiple servers using simple and efficient secure multiparty computation techniques. The linear-transformation model serves as an intermediate model between the highly expressive central model and the minimal local model. In the central model, clients have access to a trusted platform capable of applying any function to their inputs. However, this expressiveness comes at a cost, as it is often prohibitively expensive to distribute such computations, leading to the central model typically being implemented by a single trusted server. In contrast, the local model assumes no trusted platform, which forces clients to add significant noise to their data. The linear-transformation model avoids the single point of failure for privacy present in the central model, while also mitigating the high noise required in the local model. We demonstrate that linear transformations are very useful for differential privacy, allowing for the computation of linear sketches of input data. These sketches largely preserve utility for tasks such as private low-rank approximation and private ridge regression, while introducing only minimal error, critically independent of the number of clients.
Related papers
- Personalized Federated Learning with Mixture of Models for Adaptive Prediction and Model Fine-Tuning [22.705411388403036]
This paper develops a novel personalized federated learning algorithm.
Each client constructs a personalized model by combining a locally fine-tuned model with multiple federated models.
Theoretical analysis and experiments on real datasets corroborate the effectiveness of this approach.
arXiv Detail & Related papers (2024-10-28T21:20:51Z) - PeFAD: A Parameter-Efficient Federated Framework for Time Series Anomaly Detection [51.20479454379662]
We propose a.
Federated Anomaly Detection framework named PeFAD with the increasing privacy concerns.
We conduct extensive evaluations on four real datasets, where PeFAD outperforms existing state-of-the-art baselines by up to 28.74%.
arXiv Detail & Related papers (2024-06-04T13:51:08Z) - Vanishing Variance Problem in Fully Decentralized Neural-Network Systems [0.8212195887472242]
Federated learning and gossip learning are emerging methodologies designed to mitigate data privacy concerns.
Our research introduces a variance-corrected model averaging algorithm.
Our simulation results demonstrate that our approach enables gossip learning to achieve convergence efficiency comparable to that of federated learning.
arXiv Detail & Related papers (2024-04-06T12:49:20Z) - Just One Byte (per gradient): A Note on Low-Bandwidth Decentralized
Language Model Finetuning Using Shared Randomness [86.61582747039053]
Language model training in distributed settings is limited by the communication cost of exchanges.
We extend recent work using shared randomness to perform distributed fine-tuning with low bandwidth.
arXiv Detail & Related papers (2023-06-16T17:59:51Z) - Client-specific Property Inference against Secure Aggregation in
Federated Learning [52.8564467292226]
Federated learning has become a widely used paradigm for collaboratively training a common model among different participants.
Many attacks have shown that it is still possible to infer sensitive information such as membership, property, or outright reconstruction of participant data.
We show that simple linear models can effectively capture client-specific properties only from the aggregated model updates.
arXiv Detail & Related papers (2023-03-07T14:11:01Z) - Dataless Knowledge Fusion by Merging Weights of Language Models [51.8162883997512]
Fine-tuning pre-trained language models has become the prevalent paradigm for building downstream NLP models.
This creates a barrier to fusing knowledge across individual models to yield a better single model.
We propose a dataless knowledge fusion method that merges models in their parameter space.
arXiv Detail & Related papers (2022-12-19T20:46:43Z) - CrowdGuard: Federated Backdoor Detection in Federated Learning [39.58317527488534]
This paper presents a novel defense mechanism, CrowdGuard, that effectively mitigates backdoor attacks in Federated Learning.
CrowdGuard employs a server-located stacked clustering scheme to enhance its resilience to rogue client feedback.
The evaluation results demonstrate that CrowdGuard achieves a 100% True-Positive-Rate and True-Negative-Rate across various scenarios.
arXiv Detail & Related papers (2022-10-14T11:27:49Z) - Tight Differential Privacy Guarantees for the Shuffle Model with $k$-Randomized Response [6.260747047974035]
Most differentially private (DP) algorithms assume a third party inserts noise to queries made on datasets, or a local model where the users locally perturb their data.
The recently proposed shuffle model is an intermediate framework between the central and the local paradigms.
We perform experiments on both synthetic and real data to compare the privacy-utility trade-off of the shuffle model with that of the central one privatized.
arXiv Detail & Related papers (2022-05-18T10:44:28Z) - Robustness of Machine Learning Models Beyond Adversarial Attacks [0.0]
We show that the widely used concept of adversarial robustness and closely related metrics are not necessarily valid metrics for determining the robustness of ML models.
We propose a flexible approach that models possible perturbations in input data individually for each application.
This is then combined with a probabilistic approach that computes the likelihood that a real-world perturbation will change a prediction.
arXiv Detail & Related papers (2022-04-21T12:09:49Z) - A Personalized Federated Learning Algorithm: an Application in Anomaly
Detection [0.6700873164609007]
Federated Learning (FL) has recently emerged as a promising method to overcome data privacy and transmission issues.
In FL, datasets collected from different devices or sensors are used to train local models (clients) each of which shares its learning with a centralized model (server)
This paper proposes a novel Personalized FedAvg (PC-FedAvg) which aims to control weights communication and aggregation augmented with a tailored learning algorithm to personalize the resulting models at each client.
arXiv Detail & Related papers (2021-11-04T04:57:11Z) - Don't Generate Me: Training Differentially Private Generative Models
with Sinkhorn Divergence [73.14373832423156]
We propose DP-Sinkhorn, a novel optimal transport-based generative method for learning data distributions from private data with differential privacy.
Unlike existing approaches for training differentially private generative models, we do not rely on adversarial objectives.
arXiv Detail & Related papers (2021-11-01T18:10:21Z) - A Bayesian Federated Learning Framework with Online Laplace
Approximation [144.7345013348257]
Federated learning allows multiple clients to collaboratively learn a globally shared model.
We propose a novel FL framework that uses online Laplace approximation to approximate posteriors on both the client and server side.
We achieve state-of-the-art results on several benchmarks, clearly demonstrating the advantages of the proposed method.
arXiv Detail & Related papers (2021-02-03T08:36:58Z) - Input Perturbation: A New Paradigm between Central and Local
Differential Privacy [15.943736378291154]
We study the textitinput perturbation method in differentially private empirical risk minimization (DP-ERM)
We achieve ($epsilon$,$delta$)-differential privacy on the final model, along with some kind of privacy on the original data.
Our method achieves almost the same (or even better) performance as some of the best previous central methods with more protections on privacy.
arXiv Detail & Related papers (2020-02-20T05:20:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.