論文の概要: CtrlNeRF: The Generative Neural Radiation Fields for the Controllable Synthesis of High-fidelity 3D-Aware Images
- arxiv url: http://arxiv.org/abs/2412.00754v1
- Date: Sun, 01 Dec 2024 10:19:24 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-04 15:50:02.459476
- Title: CtrlNeRF: The Generative Neural Radiation Fields for the Controllable Synthesis of High-fidelity 3D-Aware Images
- Title(参考訳): CtrlNeRF:高忠実度3D画像の制御可能な合成のための生成型ニューラル放射線場
- Authors: Jian Liu, Zhen Yu,
- Abstract要約: 生成神経放射場(GRAF)は、3Dの監督なしにランダムノイズzから画像を生成することができる。
実際には、形状と外観をそれぞれz_sとz_aでモデル化し、推論中に別々に操作する。
本稿では,複数のシーンを共有重みで表現するために,単一のネットワークを用いた制御可能な生成モデルを提案する。
- 参考スコア(独自算出の注目度): 5.50550810374347
- License:
- Abstract: The neural radiance field (NERF) advocates learning the continuous representation of 3D geometry through a multilayer perceptron (MLP). By integrating this into a generative model, the generative neural radiance field (GRAF) is capable of producing images from random noise z without 3D supervision. In practice, the shape and appearance are modeled by z_s and z_a, respectively, to manipulate them separately during inference. However, it is challenging to represent multiple scenes using a solitary MLP and precisely control the generation of 3D geometry in terms of shape and appearance. In this paper, we introduce a controllable generative model (i.e. \textbf{CtrlNeRF}) that uses a single MLP network to represent multiple scenes with shared weights. Consequently, we manipulated the shape and appearance codes to realize the controllable generation of high-fidelity images with 3D consistency. Moreover, the model enables the synthesis of novel views that do not exist in the training sets via camera pose alteration and feature interpolation. Extensive experiments were conducted to demonstrate its superiority in 3D-aware image generation compared to its counterparts.
- Abstract(参考訳): 神経放射場(NERF)は多層パーセプトロン(MLP)を通して3次元幾何学の連続的な表現を学ぶことを提唱している。
これを生成モデルに統合することにより、生成神経放射場(GRAF)は、ランダムノイズzから3次元の監督なしに画像を生成することができる。
実際には、形状と外観をそれぞれz_sとz_aでモデル化し、推論中に別々に操作する。
しかし、単独のMLPを用いて複数のシーンを表現し、形状や外観の観点から3次元幾何学の生成を正確に制御することは困難である。
本稿では,複数のシーンを共有重みで表現するために,単一のMLPネットワークを用いた制御可能な生成モデル(つまり \textbf{CtrlNeRF})を提案する。
その結果,3次元整合性を有する高忠実度画像の制御可能な生成を実現するために形状と外観符号を操作した。
さらに、このモデルは、カメラポーズの修正や特徴補間によるトレーニングセットに存在しない新しいビューの合成を可能にする。
広汎な実験により, 3次元認識画像生成において, 比較して優位性を示すことができた。
関連論文リスト
- Text2Control3D: Controllable 3D Avatar Generation in Neural Radiance
Fields using Geometry-Guided Text-to-Image Diffusion Model [39.64952340472541]
本稿では,表情を制御可能な制御可能なテキスト・ツー・3Dアバター生成手法を提案する。
我々の主な戦略は、制御された視点認識画像のセットに最適化されたニューラルラジアンスフィールド(NeRF)における3Dアバターを構築することである。
実験結果を実証し,本手法の有効性について考察する。
論文 参考訳(メタデータ) (2023-09-07T08:14:46Z) - NeRF-GAN Distillation for Efficient 3D-Aware Generation with
Convolutions [97.27105725738016]
GAN(Generative Adversarial Networks)のようなニューラルラジアンスフィールド(NeRF)と生成モデルの統合は、単一ビュー画像から3D認識生成を変換した。
提案手法は,ポーズ条件付き畳み込みネットワークにおいて,事前学習したNeRF-GANの有界遅延空間を再利用し,基礎となる3次元表現に対応する3D一貫性画像を直接生成する手法である。
論文 参考訳(メタデータ) (2023-03-22T18:59:48Z) - 3D-LDM: Neural Implicit 3D Shape Generation with Latent Diffusion Models [8.583859530633417]
自動復号器の潜時空間で動作する3次元形状のニューラル暗黙表現のための拡散モデルを提案する。
これにより、多種多様な高品質な3D表面を生成できます。
論文 参考訳(メタデータ) (2022-12-01T20:00:00Z) - CGOF++: Controllable 3D Face Synthesis with Conditional Generative
Occupancy Fields [52.14985242487535]
生成した顔画像の3次元制御性を実現する条件付き3次元顔合成フレームワークを提案する。
中心となるのは条件付き生成操作場(cGOF++)であり、それによって生成された顔の形状が与えられた3Dモルファブルモデル(3DMM)メッシュに適合するように効果的に強制される。
提案手法の有効性を検証し, 最先端の2次元顔合成法よりも高精度な3次元制御性を示す実験を行った。
論文 参考訳(メタデータ) (2022-11-23T19:02:50Z) - Next3D: Generative Neural Texture Rasterization for 3D-Aware Head
Avatars [36.4402388864691]
3D-Aware Generative Adversarial Network (GANs) は, 単一視点2D画像のコレクションのみを用いて, 高忠実かつ多視点の顔画像を合成する。
最近の研究は、3D Morphable Face Model (3DMM) を用いて、生成放射場における変形を明示的または暗黙的に記述している。
本研究では,非構造化2次元画像から生成的,高品質,かつ3D一貫性のある顔アバターの教師なし学習のための新しい3D GANフレームワークを提案する。
論文 参考訳(メタデータ) (2022-11-21T06:40:46Z) - Controllable 3D Generative Adversarial Face Model via Disentangling
Shape and Appearance [63.13801759915835]
3次元顔モデリングはコンピュータビジョンとコンピュータグラフィックスの研究の活発な領域である。
本稿では,識別と表現を分離できる新しい3次元顔生成モデルを提案する。
論文 参考訳(メタデータ) (2022-08-30T13:40:48Z) - Disentangled3D: Learning a 3D Generative Model with Disentangled
Geometry and Appearance from Monocular Images [94.49117671450531]
最先端の3D生成モデルは、合成に神経的な3Dボリューム表現を使用するGANである。
本稿では,単分子観察だけで物体の絡み合ったモデルを学ぶことができる3D GANを設計する。
論文 参考訳(メタデータ) (2022-03-29T22:03:18Z) - DRaCoN -- Differentiable Rasterization Conditioned Neural Radiance
Fields for Articulated Avatars [92.37436369781692]
フルボディの体積アバターを学習するためのフレームワークであるDRaCoNを提案する。
2Dと3Dのニューラルレンダリング技術の利点を利用する。
挑戦的なZJU-MoCapとHuman3.6Mデータセットの実験は、DRaCoNが最先端の手法より優れていることを示している。
論文 参考訳(メタデータ) (2022-03-29T17:59:15Z) - Towards a Neural Graphics Pipeline for Controllable Image Generation [96.11791992084551]
ニューラルグラフパイプライン(NGP)は,ニューラルネットワークと従来の画像形成モデルを組み合わせたハイブリッド生成モデルである。
NGPは、画像を解釈可能な外観特徴マップの集合に分解し、制御可能な画像生成のための直接制御ハンドルを明らかにする。
単目的シーンの制御可能な画像生成におけるアプローチの有効性を実証する。
論文 参考訳(メタデータ) (2020-06-18T14:22:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。