Quantum kernel learning Model constructed with small data
- URL: http://arxiv.org/abs/2412.00783v1
- Date: Sun, 01 Dec 2024 12:12:58 GMT
- Title: Quantum kernel learning Model constructed with small data
- Authors: Takao Tomono, Kazuya Tsujimura,
- Abstract summary: We aim to use quantum machine learning to detect various anomalies in image inspection by using small size data.<n>Learning with SVMs embedded with specific quantum kernels showed significantly higher values of the AUC compared to classical kernels.
- Score: 0.6138671548064356
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We aim to use quantum machine learning to detect various anomalies in image inspection by using small size data. Assuming the possibility that the expressive power of the quantum kernel space is superior to that of the classical kernel space, we are studying a quantum machine learning model. Through trials of image inspection processes not only for factory products but also for products including agricultural products, the importance of trials on real data is recognized. In this study, training was carried out on SVMs embedded with various quantum kernels on a small number of agricultural product image data sets collected in the company. The quantum kernels prepared in this study consisted of a smaller number of rotating gates and control gates. The F1 scores for each quantum kernel showed a significant effect of using CNOT gates. After confirming the results with a quantum simulator, the usefulness of the quantum kernels was confirmed on a quantum computer. Learning with SVMs embedded with specific quantum kernels showed significantly higher values of the AUC compared to classical kernels. The reason for the lack of learning in quantum kernels is considered to be due to kernel concentration or exponential concentration similar to the Baren plateau. The reason why the F1 score does not increase as the number of features increases is suggested to be due to exponential concentration, while at the same time it is possible that only certain features have discriminative ability. Furthermore, it is suggested that controlled Toffoli gate may be a promising quantum kernel component.
Related papers
- Experimental Machine Learning with Classical and Quantum Data via NMR Quantum Kernels [0.0]
We implement quantum kernels on a 10-qubit star-topology register in a nuclear magnetic resonance (NMR) platform.
We experimentally encode classical data in the evolution of multiple quantum coherence orders using data-dependent unitary transformations.
Our results show that this kernel exhibits an ability to generalize well over unseen data.
arXiv Detail & Related papers (2024-12-12T18:44:38Z) - The curse of random quantum data [62.24825255497622]
We quantify the performances of quantum machine learning in the landscape of quantum data.
We find that the training efficiency and generalization capabilities in quantum machine learning will be exponentially suppressed with the increase in qubits.
Our findings apply to both the quantum kernel method and the large-width limit of quantum neural networks.
arXiv Detail & Related papers (2024-08-19T12:18:07Z) - Quantum Information Processing with Molecular Nanomagnets: an introduction [49.89725935672549]
We provide an introduction to Quantum Information Processing, focusing on a promising setup for its implementation.
We introduce the basic tools to understand and design quantum algorithms, always referring to their actual realization on a molecular spin architecture.
We present some examples of quantum algorithms proposed and implemented on a molecular spin qudit hardware.
arXiv Detail & Related papers (2024-05-31T16:43:20Z) - Power Characterization of Noisy Quantum Kernels [52.47151453259434]
We show that noise may make quantum kernel methods to only have poor prediction capability, even when the generalization error is small.
We provide a crucial warning to employ noisy quantum kernel methods for quantum computation.
arXiv Detail & Related papers (2024-01-31T01:02:16Z) - Several fitness functions and entanglement gates in quantum kernel
generation [3.6953740776904924]
Entanglement, a fundamental concept in quantum mechanics, assumes a central role in quantum computing.
We investigate the optimal number of entanglement gates in the quantum kernel feature maps by a multi-objective genetic algorithm.
Our findings offer valuable guidance for enhancing the efficiency and accuracy of quantum machine learning algorithms.
arXiv Detail & Related papers (2023-08-22T18:35:51Z) - Hybrid quantum transfer learning for crack image classification on NISQ
hardware [62.997667081978825]
We present an application of quantum transfer learning for detecting cracks in gray value images.
We compare the performance and training time of PennyLane's standard qubits with IBM's qasm_simulator and real backends.
arXiv Detail & Related papers (2023-07-31T14:45:29Z) - Kernel-based quantum regressor models learn non-Markovianity [0.0]
Kernel-based quantum machine learning models are paradigmatic examples.
With the kernel at hand, a regular machine learning model is used for the learning process.
We show that our models deliver accurate predictions that are comparable with the fully classical models.
arXiv Detail & Related papers (2022-09-23T15:36:15Z) - Noisy Quantum Kernel Machines [58.09028887465797]
An emerging class of quantum learning machines is that based on the paradigm of quantum kernels.
We study how dissipation and decoherence affect their performance.
We show that decoherence and dissipation can be seen as an implicit regularization for the quantum kernel machines.
arXiv Detail & Related papers (2022-04-26T09:52:02Z) - Training Quantum Embedding Kernels on Near-Term Quantum Computers [0.08563354084119063]
Quantum embedding kernels (QEKs) constructed by embedding data into the Hilbert space of a quantum computer are a particular quantum kernel technique.
We first provide an accessible introduction to quantum embedding kernels and then analyze the practical issues arising when realizing them on a noisy near-term quantum computer.
arXiv Detail & Related papers (2021-05-05T18:41:13Z) - Towards understanding the power of quantum kernels in the NISQ era [79.8341515283403]
We show that the advantage of quantum kernels is vanished for large size datasets, few number of measurements, and large system noise.
Our work provides theoretical guidance of exploring advanced quantum kernels to attain quantum advantages on NISQ devices.
arXiv Detail & Related papers (2021-03-31T02:41:36Z) - Quantum machine learning models are kernel methods [0.0]
This technical manuscript summarises, formalises and extends the link by systematically rephrasing quantum models as a kernel method.
It shows that most near-term and fault-tolerant quantum models can be replaced by a general support vector machine.
In particular, kernel-based training is guaranteed to find better or equally good quantum models than variational circuit training.
arXiv Detail & Related papers (2021-01-26T19:00:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.