Several fitness functions and entanglement gates in quantum kernel
generation
- URL: http://arxiv.org/abs/2309.03307v3
- Date: Sun, 19 Nov 2023 12:36:40 GMT
- Title: Several fitness functions and entanglement gates in quantum kernel
generation
- Authors: Haiyan Wang
- Abstract summary: Entanglement, a fundamental concept in quantum mechanics, assumes a central role in quantum computing.
We investigate the optimal number of entanglement gates in the quantum kernel feature maps by a multi-objective genetic algorithm.
Our findings offer valuable guidance for enhancing the efficiency and accuracy of quantum machine learning algorithms.
- Score: 3.6953740776904924
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum machine learning (QML) represents a promising frontier in the quantum
technologies. In this pursuit of quantum advantage, the quantum kernel method
for support vector machine has emerged as a powerful approach. Entanglement, a
fundamental concept in quantum mechanics, assumes a central role in quantum
computing. In this paper, we investigate the optimal number of entanglement
gates in the quantum kernel feature maps by a multi-objective genetic
algorithm. We distinct the fitness functions of genetic algorithm for non-local
gates for entanglement and local gates to gain insights into the benefits of
employing entanglement gates. Our experiments reveal that the optimal
configuration of quantum circuits for the quantum kernel method incorporates a
proportional number of non-local gates for entanglement. The result complements
the prior literature on quantum kernel generation where non-local gates were
largely suppressed. Furthermore, we demonstrate that the separability indexes
of data can be leveraged to estimate the number of non-local gates required for
the quantum support vector machine's feature maps. This insight can be helpful
in selecting appropriate parameters, such as the entanglement parameter, in
various quantum programming packages like https://qiskit.org/ based on data
analysis. Our findings offer valuable guidance for enhancing the efficiency and
accuracy of quantum machine learning algorithms.
Related papers
- The curse of random quantum data [62.24825255497622]
We quantify the performances of quantum machine learning in the landscape of quantum data.
We find that the training efficiency and generalization capabilities in quantum machine learning will be exponentially suppressed with the increase in qubits.
Our findings apply to both the quantum kernel method and the large-width limit of quantum neural networks.
arXiv Detail & Related papers (2024-08-19T12:18:07Z) - YAQQ: Yet Another Quantum Quantizer -- Design Space Exploration of Quantum Gate Sets using Novelty Search [0.9932551365711049]
We present a software tool for comparative analysis of quantum processing units and control protocols based on their native gates.
The developed software, YAQQ (Yet Another Quantum Quantizer), enables the discovery of an optimized set of quantum gates.
arXiv Detail & Related papers (2024-06-25T14:55:35Z) - Power Characterization of Noisy Quantum Kernels [52.47151453259434]
We show that noise may make quantum kernel methods to only have poor prediction capability, even when the generalization error is small.
We provide a crucial warning to employ noisy quantum kernel methods for quantum computation.
arXiv Detail & Related papers (2024-01-31T01:02:16Z) - Monte Carlo Graph Search for Quantum Circuit Optimization [26.114550071165628]
This work proposes a quantum architecture search algorithm based on a Monte Carlo graph search and measures of importance sampling.
It is applicable to the optimization of gate order, both for discrete gates, as well as gates containing continuous variables.
arXiv Detail & Related papers (2023-07-14T14:01:25Z) - Variational Quantum Kernels with Task-Specific Quantum Metric Learning [0.8722210937404288]
Kernel methods rely on the notion of similarity between points in a higher (possibly infinite) dimensional feature space.
We discuss the use of variational quantum kernels with task-specific quantum metric learning to generate optimal quantum embeddings.
arXiv Detail & Related papers (2022-11-08T18:36:25Z) - An Introduction to Quantum Machine Learning for Engineers [36.18344598412261]
Quantum machine learning is emerging as a dominant paradigm to program gate-based quantum computers.
This book provides a self-contained introduction to quantum machine learning for an audience of engineers with a background in probability and linear algebra.
arXiv Detail & Related papers (2022-05-11T12:10:52Z) - Noisy Quantum Kernel Machines [58.09028887465797]
An emerging class of quantum learning machines is that based on the paradigm of quantum kernels.
We study how dissipation and decoherence affect their performance.
We show that decoherence and dissipation can be seen as an implicit regularization for the quantum kernel machines.
arXiv Detail & Related papers (2022-04-26T09:52:02Z) - Optimal quantum kernels for small data classification [0.0]
We show an algorithm for constructing quantum kernels for support vector machines that adapts quantum gate sequences to data.
The performance of the resulting quantum models for classification problems with a small number of training points significantly exceeds that of optimized classical models.
arXiv Detail & Related papers (2022-03-25T18:26:44Z) - Efficient criteria of quantumness for a large system of qubits [58.720142291102135]
We discuss the dimensionless combinations of basic parameters of large, partially quantum coherent systems.
Based on analytical and numerical calculations, we suggest one such number for a system of qubits undergoing adiabatic evolution.
arXiv Detail & Related papers (2021-08-30T23:50:05Z) - Towards understanding the power of quantum kernels in the NISQ era [79.8341515283403]
We show that the advantage of quantum kernels is vanished for large size datasets, few number of measurements, and large system noise.
Our work provides theoretical guidance of exploring advanced quantum kernels to attain quantum advantages on NISQ devices.
arXiv Detail & Related papers (2021-03-31T02:41:36Z) - QUANTIFY: A framework for resource analysis and design verification of
quantum circuits [69.43216268165402]
QUANTIFY is an open-source framework for the quantitative analysis of quantum circuits.
It is based on Google Cirq and is developed with Clifford+T circuits in mind.
For benchmarking purposes QUANTIFY includes quantum memory and quantum arithmetic circuits.
arXiv Detail & Related papers (2020-07-21T15:36:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.