論文の概要: A Cognac shot to forget bad memories: Corrective Unlearning in GNNs
- arxiv url: http://arxiv.org/abs/2412.00789v1
- Date: Sun, 01 Dec 2024 12:23:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-04 15:50:49.941253
- Title: A Cognac shot to forget bad memories: Corrective Unlearning in GNNs
- Title(参考訳): 記憶の悪さを忘れるコニャックショット:GNNの訂正的アンラーニング
- Authors: Varshita Kolipaka, Akshit Sinha, Debangan Mishra, Sumit Kumar, Arvindh Arun, Shashwat Goel, Ponnurangam Kumaraguru,
- Abstract要約: 我々は,最近定式化された矯正的未学習の問題について検討した。
現在のグラフアンラーニング手法は、操作された集合が全て知られている場合でも、操作の効果を解き放たない。
コニャックというグラフアンラーニング手法を導入し、5%しか特定されていない場合でも操作セットの効果を解き放つことができる。
- 参考スコア(独自算出の注目度): 6.091676923379987
- License:
- Abstract: Graph Neural Networks (GNNs) are increasingly being used for a variety of ML applications on graph data. As graph data does not follow the independently and identically distributed (i.i.d) assumption, adversarial manipulations or incorrect data can propagate to other data points through message passing, deteriorating the model's performance. To allow model developers to remove the adverse effects of manipulated entities from a trained GNN, we study the recently formulated problem of Corrective Unlearning. We find that current graph unlearning methods fail to unlearn the effect of manipulations even when the whole manipulated set is known. We introduce a new graph unlearning method, Cognac, which can unlearn the effect of the manipulation set even when only 5% of it is identified. It recovers most of the performance of a strong oracle with fully corrected training data, even beating retraining from scratch without the deletion set while being 8x more efficient. We hope our work guides GNN developers in fixing harmful effects due to issues in real-world data post-training.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)は、グラフデータ上のさまざまなMLアプリケーションにますます利用されている。
グラフデータは独立に同じ分布(d)の仮定に従わないため、逆操作や不正なデータはメッセージパッシングを通じて他のデータポイントに伝播し、モデルの性能を劣化させる。
モデル開発者が、訓練されたGNNから操作対象の悪影響を除去できるようにするために、最近の修正未学習の定式化問題について検討する。
現在のグラフアンラーニング手法では、操作された集合がすべて分かっている場合でも、操作の効果を解き放たないことがわかった。
コニャックというグラフアンラーニング手法を導入し、5%しか特定されていない場合でも操作セットの効果を解き放つことができる。
訓練データを完全に修正した強力なオラクルの性能を回復し、8倍の効率を保ちながら、削除セットなしでゼロからトレーニングを再開する。
われわれの研究は、GNNのデベロッパーに、実世界のデータポストトレーニングの問題による有害な効果の修正を促すことを願っている。
関連論文リスト
- TCGU: Data-centric Graph Unlearning based on Transferable Condensation [36.670771080732486]
Transferable Condensation Graph Unlearning (TCGU)は、ゼロガンスグラフアンラーニングのためのデータ中心のソリューションである。
我々は,TGUが既存のGU手法よりもモデルユーティリティ,未学習効率,未学習効率において優れた性能を発揮することを示す。
論文 参考訳(メタデータ) (2024-10-09T02:14:40Z) - Graph Unlearning with Efficient Partial Retraining [28.433619085748447]
グラフニューラルネットワーク(GNN)は、様々な現実世界のアプリケーションで顕著な成功を収めている。
GNNは、望ましくないグラフデータに基づいてトレーニングされ、パフォーマンスと信頼性を低下させることができる。
学習不能なGNNのモデルユーティリティをよりよく維持するグラフアンラーニングフレームワークであるGraphRevokerを提案する。
論文 参考訳(メタデータ) (2024-03-12T06:22:10Z) - GraphGuard: Detecting and Counteracting Training Data Misuse in Graph
Neural Networks [69.97213941893351]
グラフデータ分析におけるグラフニューラルネットワーク(GNN)の出現は、モデルトレーニング中のデータ誤用に関する重要な懸念を引き起こしている。
既存の手法は、データ誤用検出または緩和のいずれかに対応しており、主にローカルGNNモデル用に設計されている。
本稿では,これらの課題に対処するため,GraphGuardという先駆的なアプローチを導入する。
論文 参考訳(メタデータ) (2023-12-13T02:59:37Z) - GIF: A General Graph Unlearning Strategy via Influence Function [63.52038638220563]
Graph Influence Function (GIF)は、削除されたデータにおける$epsilon$-massの摂動に応答してパラメータの変化を効率的に正確に推定できる、モデルに依存しない未学習の手法である。
我々は,4つの代表的GNNモデルと3つのベンチマークデータセットについて広範な実験を行い,未学習の有効性,モデルの有用性,未学習効率の観点からGIFの優位性を正当化する。
論文 参考訳(メタデータ) (2023-04-06T03:02:54Z) - Graph Neural Network Training with Data Tiering [16.02267628659034]
グラフニューラルネットワーク(GNN)は、不正検出やレコメンデーション、知識グラフ推論など、グラフ構造化データから学ぶことに成功している。
しかし,1)GPUメモリ容量が限られ,大規模なデータセットでは不十分であり,2)グラフベースのデータ構造が不規則なデータアクセスパターンを引き起こすため,GNNを効率的にトレーニングすることは困難である。
本研究では,GNNトレーニングに先立って,より頻繁にアクセスされるデータを統計的に分析し,識別する手法を提案する。
論文 参考訳(メタデータ) (2021-11-10T19:35:10Z) - Distributionally Robust Semi-Supervised Learning Over Graphs [68.29280230284712]
グラフ構造化データに対する半教師付き学習(SSL)は、多くのネットワークサイエンスアプリケーションに現れる。
グラフ上の学習を効率的に管理するために,近年,グラフニューラルネットワーク(GNN)の変種が開発されている。
実際に成功したにも拘わらず、既存の手法のほとんどは、不確実な結節属性を持つグラフを扱うことができない。
ノイズ測定によって得られたデータに関連する分布の不確実性によっても問題が発生する。
分散ロバストな学習フレームワークを開発し,摂動に対する定量的ロバスト性を示すモデルを訓練する。
論文 参考訳(メタデータ) (2021-10-20T14:23:54Z) - Jointly Learnable Data Augmentations for Self-Supervised GNNs [0.311537581064266]
本稿では,グラフ表現学習のための自己教師型学習手法であるGraphSurgeonを提案する。
学習可能なデータ拡張の柔軟性を活用し、埋め込み空間で強化する新しい戦略を導入する。
その結果,GraphSurgeonは6つのSOTA半教師付きベースラインに匹敵し,ノード分類タスクにおける5つのSOTA自己教師付きベースラインに匹敵することがわかった。
論文 参考訳(メタデータ) (2021-08-23T21:33:12Z) - Shift-Robust GNNs: Overcoming the Limitations of Localized Graph
Training data [52.771780951404565]
Shift-Robust GNN (SR-GNN) は、バイアス付きトレーニングデータとグラフの真の推論分布の分布差を考慮に入れた設計である。
SR-GNNが他のGNNベースラインを精度良く上回り、バイアス付きトレーニングデータから生じる負の効果の少なくとも40%を排除していることを示す。
論文 参考訳(メタデータ) (2021-08-02T18:00:38Z) - Combining Label Propagation and Simple Models Out-performs Graph Neural
Networks [52.121819834353865]
多くの標準的なトランスダクティブノード分類ベンチマークでは、最先端のGNNの性能を超えたり、一致させることができる。
これをC&S(Correct and Smooth)と呼ぶ。
我々のアプローチは、様々なベンチマークで最先端のGNNの性能を上回るか、ほぼ一致している。
論文 参考訳(メタデータ) (2020-10-27T02:10:52Z) - Graph Contrastive Learning with Augmentations [109.23158429991298]
グラフデータの教師なし表現を学習するためのグラフコントラスト学習(GraphCL)フレームワークを提案する。
我々のフレームワークは、最先端の手法と比較して、類似またはより良い一般化可能性、転送可能性、堅牢性のグラフ表現を作成できることを示す。
論文 参考訳(メタデータ) (2020-10-22T20:13:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。