Motion-Aware Optical Camera Communication with Event Cameras
- URL: http://arxiv.org/abs/2412.00816v1
- Date: Sun, 01 Dec 2024 14:06:31 GMT
- Title: Motion-Aware Optical Camera Communication with Event Cameras
- Authors: Hang Su, Ling Gao, Tao Liu, Laurent Kneip,
- Abstract summary: This paper unveils a novel system that utilizes event cameras.
We introduce a dynamic visual marker and design event-based tracking algorithms to achieve fast localization and data streaming.
Remarkably, the event camera's unique capabilities mitigate issues related to screen refresh rates and camera motion, enabling a high throughput of up to 114 Kbps in static conditions.
- Score: 28.041269887313042
- License:
- Abstract: As the ubiquity of smart mobile devices continues to rise, Optical Camera Communication systems have gained more attention as a solution for efficient and private data streaming. This system utilizes optical cameras to receive data from digital screens via visible light. Despite their promise, most of them are hindered by dynamic factors such as screen refreshing and rapid camera motion. CMOS cameras, often serving as the receivers, suffer from limited frame rates and motion-induced image blur, which degrade overall performance. To address these challenges, this paper unveils a novel system that utilizes event cameras. We introduce a dynamic visual marker and design event-based tracking algorithms to achieve fast localization and data streaming. Remarkably, the event camera's unique capabilities mitigate issues related to screen refresh rates and camera motion, enabling a high throughput of up to 114 Kbps in static conditions, and a 1 cm localization accuracy with 1% bit error rate under various camera motions.
Related papers
- Low-Latency Scalable Streaming for Event-Based Vision [0.5242869847419834]
We propose a scalable streaming method for event-based data based on Media Over QUIC.
We show that a state-of-the-art object detection application is resilient to dramatic data loss.
We observe an average reduction in detection mAP as low as 0.36.
arXiv Detail & Related papers (2024-12-10T19:48:57Z) - CamLoPA: A Hidden Wireless Camera Localization Framework via Signal Propagation Path Analysis [59.86280992504629]
CamLoPA is a training-free wireless camera detection and localization framework.
It operates with minimal activity space constraints using low-cost commercial-off-the-shelf (COTS) devices.
It achieves 95.37% snooping camera detection accuracy and an average localization error of 17.23, under the significantly reduced activity space requirements.
arXiv Detail & Related papers (2024-09-23T16:23:50Z) - Motion Segmentation for Neuromorphic Aerial Surveillance [42.04157319642197]
Event cameras offer superior temporal resolution, superior dynamic range, and minimal power requirements.
Unlike traditional frame-based sensors that capture redundant information at fixed intervals, event cameras asynchronously record pixel-level brightness changes.
We introduce a novel motion segmentation method that leverages self-supervised vision transformers on both event data and optical flow information.
arXiv Detail & Related papers (2024-05-24T04:36:13Z) - EvConv: Fast CNN Inference on Event Camera Inputs For High-Speed Robot
Perception [1.3869227429939426]
Event cameras capture visual information with a high temporal resolution and a wide dynamic range.
Current convolutional neural network inference on event camera streams cannot currently perform real-time inference at the high speeds at which event cameras operate.
This paper presents EvConv, a new approach to enable fast inference on CNNs for inputs from event cameras.
arXiv Detail & Related papers (2023-03-08T15:47:13Z) - Lasers to Events: Automatic Extrinsic Calibration of Lidars and Event
Cameras [67.84498757689776]
This paper presents the first direct calibration method between event cameras and lidars.
It removes dependencies on frame-based camera intermediaries and/or highly-accurate hand measurements.
arXiv Detail & Related papers (2022-07-03T11:05:45Z) - TimeReplayer: Unlocking the Potential of Event Cameras for Video
Interpolation [78.99283105497489]
Event camera is a new device to enable video at the presence of arbitrarily complex motion.
This paper proposes a novel TimeReplayer algorithm to interpolate videos captured by commodity cameras with events.
arXiv Detail & Related papers (2022-03-25T18:57:42Z) - E$^2$(GO)MOTION: Motion Augmented Event Stream for Egocentric Action
Recognition [21.199869051111367]
Event cameras capture pixel-level intensity changes in the form of "events"
N-EPIC-Kitchens is the first event-based camera extension of the large-scale EPIC-Kitchens dataset.
We show that event data provides a comparable performance to RGB and optical flow, yet without any additional flow computation at deploy time.
arXiv Detail & Related papers (2021-12-07T09:43:08Z) - ESL: Event-based Structured Light [62.77144631509817]
Event cameras are bio-inspired sensors providing significant advantages over standard cameras.
We propose a novel structured-light system using an event camera to tackle the problem of accurate and high-speed depth sensing.
arXiv Detail & Related papers (2021-11-30T15:47:39Z) - TUM-VIE: The TUM Stereo Visual-Inertial Event Dataset [50.8779574716494]
Event cameras are bio-inspired vision sensors which measure per pixel brightness changes.
They offer numerous benefits over traditional, frame-based cameras, including low latency, high dynamic range, high temporal resolution and low power consumption.
To foster the development of 3D perception and navigation algorithms with event cameras, we present the TUM-VIE dataset.
arXiv Detail & Related papers (2021-08-16T19:53:56Z) - Real-Time Face & Eye Tracking and Blink Detection using Event Cameras [3.842206880015537]
Event cameras contain emerging, neuromorphic vision sensors that capture local light intensity changes at each pixel, generating a stream of asynchronous events.
Driver monitoring systems (DMS) are in-cabin safety systems designed to sense and understand a drivers physical and cognitive state.
This paper proposes a novel method to simultaneously detect and track faces and eyes for driver monitoring.
arXiv Detail & Related papers (2020-10-16T10:02:41Z) - Reducing the Sim-to-Real Gap for Event Cameras [64.89183456212069]
Event cameras are paradigm-shifting novel sensors that report asynchronous, per-pixel brightness changes called 'events' with unparalleled low latency.
Recent work has demonstrated impressive results using Convolutional Neural Networks (CNNs) for video reconstruction and optic flow with events.
We present strategies for improving training data for event based CNNs that result in 20-40% boost in performance of existing video reconstruction networks.
arXiv Detail & Related papers (2020-03-20T02:44:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.