Low-Latency Scalable Streaming for Event-Based Vision
- URL: http://arxiv.org/abs/2412.07889v2
- Date: Fri, 13 Dec 2024 15:39:27 GMT
- Title: Low-Latency Scalable Streaming for Event-Based Vision
- Authors: Andrew Hamara, Benjamin Kilpatrick, Alex Baratta, Brendon Kofink, Andrew C. Freeman,
- Abstract summary: We propose a scalable streaming method for event-based data based on Media Over QUIC.
We show that a state-of-the-art object detection application is resilient to dramatic data loss.
We observe an average reduction in detection mAP as low as 0.36.
- Score: 0.5242869847419834
- License:
- Abstract: Recently, we have witnessed the rise of novel ``event-based'' camera sensors for high-speed, low-power video capture. Rather than recording discrete image frames, these sensors output asynchronous ``event'' tuples with microsecond precision, only when the brightness change of a given pixel exceeds a certain threshold. Although these sensors have enabled compelling new computer vision applications, these applications often require expensive, power-hungry GPU systems, rendering them incompatible for deployment on the low-power devices for which event cameras are optimized. Whereas receiver-driven rate adaptation is a crucial feature of modern video streaming solutions, this topic is underexplored in the realm of event-based vision systems. On a real-world event camera dataset, we first demonstrate that a state-of-the-art object detection application is resilient to dramatic data loss, and that this loss may be weighted towards the end of each temporal window. We then propose a scalable streaming method for event-based data based on Media Over QUIC, prioritizing object detection performance and low latency. The application server can receive complementary event data across several streams simultaneously, and drop streams as needed to maintain a certain latency. With a latency target of 5 ms for end-to-end transmission across a small network, we observe an average reduction in detection mAP as low as 0.36. With a more relaxed latency target of 50 ms, we observe an average mAP reduction as low as 0.19.
Related papers
- EV-Catcher: High-Speed Object Catching Using Low-latency Event-based
Neural Networks [107.62975594230687]
We demonstrate an application where event cameras excel: accurately estimating the impact location of fast-moving objects.
We introduce a lightweight event representation called Binary Event History Image (BEHI) to encode event data at low latency.
We show that the system is capable of achieving a success rate of 81% in catching balls targeted at different locations, with a velocity of up to 13 m/s even on compute-constrained embedded platforms.
arXiv Detail & Related papers (2023-04-14T15:23:28Z) - Optical flow estimation from event-based cameras and spiking neural
networks [0.4899818550820575]
Event-based sensors are an excellent fit for Spiking Neural Networks (SNNs)
We propose a U-Net-like SNN which, after supervised training, is able to make dense optical flow estimations.
Thanks to separable convolutions, we have been able to develop a light model that can nonetheless yield reasonably accurate optical flow estimates.
arXiv Detail & Related papers (2023-02-13T16:17:54Z) - An Asynchronous Intensity Representation for Framed and Event Video
Sources [2.9097303137825046]
We introduce an intensity representation for both framed and non-framed data sources.
We show that our representation can increase intensity precision and greatly reduce the number of samples per pixel.
We argue that our method provides the computational efficiency and temporal granularity necessary to build real-time intensity-based applications for event cameras.
arXiv Detail & Related papers (2023-01-20T19:46:23Z) - Event-based Shape from Polarization [43.483063713471935]
State-of-the-art solutions for Shape-from-Polarization (SfP) suffer from a speed-resolution tradeoff.
We tackle this tradeoff using event cameras.
We propose a setup that consists of a linear polarizer rotating at high-speeds in front of an event camera.
arXiv Detail & Related papers (2023-01-17T12:59:58Z) - Data-driven Feature Tracking for Event Cameras [48.04815194265117]
We introduce the first data-driven feature tracker for event cameras, which leverages low-latency events to track features detected in a grayscale frame.
By directly transferring zero-shot from synthetic to real data, our data-driven tracker outperforms existing approaches in relative feature age by up to 120%.
This performance gap is further increased to 130% by adapting our tracker to real data with a novel self-supervision strategy.
arXiv Detail & Related papers (2022-11-23T10:20:11Z) - Real-time Object Detection for Streaming Perception [84.2559631820007]
Streaming perception is proposed to jointly evaluate the latency and accuracy into a single metric for video online perception.
We build a simple and effective framework for streaming perception.
Our method achieves competitive performance on Argoverse-HD dataset and improves the AP by 4.9% compared to the strong baseline.
arXiv Detail & Related papers (2022-03-23T11:33:27Z) - FOVEA: Foveated Image Magnification for Autonomous Navigation [53.69803081925454]
We propose an attentional approach that elastically magnifies certain regions while maintaining a small input canvas.
Our proposed method boosts the detection AP over standard Faster R-CNN, with and without finetuning.
On the autonomous driving datasets Argoverse-HD and BDD100K, we show our proposed method boosts the detection AP over standard Faster R-CNN, with and without finetuning.
arXiv Detail & Related papers (2021-08-27T03:07:55Z) - Learning Monocular Dense Depth from Events [53.078665310545745]
Event cameras produce brightness changes in the form of a stream of asynchronous events instead of intensity frames.
Recent learning-based approaches have been applied to event-based data, such as monocular depth prediction.
We propose a recurrent architecture to solve this task and show significant improvement over standard feed-forward methods.
arXiv Detail & Related papers (2020-10-16T12:36:23Z) - Streaming Object Detection for 3-D Point Clouds [29.465873948076766]
LiDAR provides a prominent sensory modality that informs many existing perceptual systems.
The latency for perceptual systems based on point cloud data can be dominated by the amount of time for a complete rotational scan.
We show how operating on LiDAR data in its native streaming formulation offers several advantages for self driving object detection.
arXiv Detail & Related papers (2020-05-04T21:55:15Z) - Reducing the Sim-to-Real Gap for Event Cameras [64.89183456212069]
Event cameras are paradigm-shifting novel sensors that report asynchronous, per-pixel brightness changes called 'events' with unparalleled low latency.
Recent work has demonstrated impressive results using Convolutional Neural Networks (CNNs) for video reconstruction and optic flow with events.
We present strategies for improving training data for event based CNNs that result in 20-40% boost in performance of existing video reconstruction networks.
arXiv Detail & Related papers (2020-03-20T02:44:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.