SyncVIS: Synchronized Video Instance Segmentation
- URL: http://arxiv.org/abs/2412.00882v1
- Date: Sun, 01 Dec 2024 16:43:20 GMT
- Title: SyncVIS: Synchronized Video Instance Segmentation
- Authors: Rongkun Zheng, Lu Qi, Xi Chen, Yi Wang, Kun Wang, Yu Qiao, Hengshuang Zhao,
- Abstract summary: We propose to conduct synchronized modeling via a new framework named SyncVIS.
SyncVIS explicitly introduces video-level query embeddings and designs two key modules to synchronize video-level query with frame-level query embeddings.
The proposed approach achieves state-of-the-art results, which demonstrates the effectiveness and generality of the proposed approach.
- Score: 48.75470418596875
- License:
- Abstract: Recent DETR-based methods have advanced the development of Video Instance Segmentation (VIS) through transformers' efficiency and capability in modeling spatial and temporal information. Despite harvesting remarkable progress, existing works follow asynchronous designs, which model video sequences via either video-level queries only or adopting query-sensitive cascade structures, resulting in difficulties when handling complex and challenging video scenarios. In this work, we analyze the cause of this phenomenon and the limitations of the current solutions, and propose to conduct synchronized modeling via a new framework named SyncVIS. Specifically, SyncVIS explicitly introduces video-level query embeddings and designs two key modules to synchronize video-level query with frame-level query embeddings: a synchronized video-frame modeling paradigm and a synchronized embedding optimization strategy. The former attempts to promote the mutual learning of frame- and video-level embeddings with each other and the latter divides large video sequences into small clips for easier optimization. Extensive experimental evaluations are conducted on the challenging YouTube-VIS 2019 & 2021 & 2022, and OVIS benchmarks and SyncVIS achieves state-of-the-art results, which demonstrates the effectiveness and generality of the proposed approach. The code is available at https://github.com/rkzheng99/SyncVIS.
Related papers
- Sync from the Sea: Retrieving Alignable Videos from Large-Scale Datasets [62.280729345770936]
We introduce the task of Alignable Video Retrieval (AVR)
Given a query video, our approach can identify well-alignable videos from a large collection of clips and temporally synchronize them to the query.
Our experiments on 3 datasets, including large-scale Kinetics700, demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2024-09-02T20:00:49Z) - TC-Bench: Benchmarking Temporal Compositionality in Text-to-Video and Image-to-Video Generation [97.96178992465511]
We argue that generated videos should incorporate the emergence of new concepts and their relation transitions like in real-world videos as time progresses.
To assess the Temporal Compositionality of video generation models, we propose TC-Bench, a benchmark of meticulously crafted text prompts, corresponding ground truth videos, and robust evaluation metrics.
arXiv Detail & Related papers (2024-06-12T21:41:32Z) - DVIS++: Improved Decoupled Framework for Universal Video Segmentation [30.703276476607545]
We present OV-DVIS++, the first open-vocabulary universal video segmentation framework.
By integrating CLIP with DVIS++, we present OV-DVIS++, the first open-vocabulary universal video segmentation framework.
arXiv Detail & Related papers (2023-12-20T03:01:33Z) - Transform-Equivariant Consistency Learning for Temporal Sentence
Grounding [66.10949751429781]
We introduce a novel Equivariant Consistency Regulation Learning framework to learn more discriminative representations for each video.
Our motivation comes from that the temporal boundary of the query-guided activity should be consistently predicted.
In particular, we devise a self-supervised consistency loss module to enhance the completeness and smoothness of the augmented video.
arXiv Detail & Related papers (2023-05-06T19:29:28Z) - Streaming Video Model [90.24390609039335]
We propose to unify video understanding tasks into one streaming video architecture, referred to as Streaming Vision Transformer (S-ViT)
S-ViT first produces frame-level features with a memory-enabled temporally-aware spatial encoder to serve frame-based video tasks.
The efficiency and efficacy of S-ViT is demonstrated by the state-of-the-art accuracy in the sequence-based action recognition.
arXiv Detail & Related papers (2023-03-30T08:51:49Z) - Online Video Instance Segmentation via Robust Context Fusion [36.376900904288966]
Video instance segmentation (VIS) aims at classifying, segmenting and tracking object instances in video sequences.
Recent transformer-based neural networks have demonstrated their powerful capability of modeling for the VIS task.
We propose a robust context fusion network to tackle VIS in an online fashion, which predicts instance segmentation frame-by-frame with a few preceding frames.
arXiv Detail & Related papers (2022-07-12T15:04:50Z) - STC: Spatio-Temporal Contrastive Learning for Video Instance
Segmentation [47.28515170195206]
Video Instance (VIS) is a task that simultaneously requires classification, segmentation, and instance association in a video.
Recent VIS approaches rely on sophisticated pipelines to achieve this goal, including RoI-related operations or 3D convolutions.
We present a simple and efficient single-stage VIS framework based on the instance segmentation method ConInst.
arXiv Detail & Related papers (2022-02-08T09:34:26Z) - Noisy-LSTM: Improving Temporal Awareness for Video Semantic Segmentation [29.00635219317848]
This paper presents a new model named Noisy-LSTM, which is trainable in an end-to-end manner.
We also present a simple yet effective training strategy, which replaces a frame in video sequence with noises.
arXiv Detail & Related papers (2020-10-19T13:08:15Z) - Temporal Context Aggregation for Video Retrieval with Contrastive
Learning [81.12514007044456]
We propose TCA, a video representation learning framework that incorporates long-range temporal information between frame-level features.
The proposed method shows a significant performance advantage (17% mAP on FIVR-200K) over state-of-the-art methods with video-level features.
arXiv Detail & Related papers (2020-08-04T05:24:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.