Bilinear Convolution Decomposition for Causal RL Interpretability
- URL: http://arxiv.org/abs/2412.00944v1
- Date: Sun, 01 Dec 2024 19:32:04 GMT
- Title: Bilinear Convolution Decomposition for Causal RL Interpretability
- Authors: Narmeen Oozeer, Sinem Erisken, Alice Rigg,
- Abstract summary: Efforts to interpret reinforcement learning (RL) models often rely on high-level techniques such as attribution or probing.
This work proposes replacing nonlinearities in convolutional neural networks (ConvNets) with bilinear variants, to produce a class of models for which these limitations can be addressed.
We show bilinear model variants perform comparably in model-free reinforcement learning settings, and give a side by side comparison on ProcGen environments.
- Score: 0.0
- License:
- Abstract: Efforts to interpret reinforcement learning (RL) models often rely on high-level techniques such as attribution or probing, which provide only correlational insights and coarse causal control. This work proposes replacing nonlinearities in convolutional neural networks (ConvNets) with bilinear variants, to produce a class of models for which these limitations can be addressed. We show bilinear model variants perform comparably in model-free reinforcement learning settings, and give a side by side comparison on ProcGen environments. Bilinear layers' analytic structure enables weight-based decomposition. Previous work has shown bilinearity enables quantifying functional importance through eigendecomposition, to identify interpretable low rank structure. We show how to adapt the decomposition to convolution layers by applying singular value decomposition to vectors of interest, to separate the channel and spatial dimensions. Finally, we propose a methodology for causally validating concept-based probes, and illustrate its utility by studying a maze-solving agent's ability to track a cheese object.
Related papers
- A theoretical framework for overfitting in energy-based modeling [5.1337384597700995]
We investigate the impact of limited data on training pairwise energy-based models for inverse problems aimed at identifying interaction networks.
We dissect training trajectories across the eigenbasis of the coupling matrix, exploiting the independent evolution of eigenmodes.
We show that finite data corrections can be accurately modeled through random matrix theory calculations.
arXiv Detail & Related papers (2025-01-31T14:21:02Z) - Cross-Entropy Is All You Need To Invert the Data Generating Process [29.94396019742267]
Empirical phenomena suggest that supervised models can learn interpretable factors of variation in a linear fashion.
Recent advances in self-supervised learning have shown that these methods can recover latent structures by inverting the data generating process.
We prove that even in standard classification tasks, models learn representations of ground-truth factors of variation up to a linear transformation.
arXiv Detail & Related papers (2024-10-29T09:03:57Z) - Weight-based Decomposition: A Case for Bilinear MLPs [0.0]
Gated Linear Units (GLUs) have become a common building block in modern foundation models.
Bilinear layers drop the non-linearity in the "gate" but still have comparable performance to other GLUs.
We develop a method to decompose the bilinear tensor into a set of interacting eigenvectors.
arXiv Detail & Related papers (2024-06-06T10:46:51Z) - Scaling and renormalization in high-dimensional regression [72.59731158970894]
This paper presents a succinct derivation of the training and generalization performance of a variety of high-dimensional ridge regression models.
We provide an introduction and review of recent results on these topics, aimed at readers with backgrounds in physics and deep learning.
arXiv Detail & Related papers (2024-05-01T15:59:00Z) - Layered Models can "Automatically" Regularize and Discover Low-Dimensional Structures via Feature Learning [6.109362130047454]
We study a two-layer nonparametric regression model where the input undergoes a linear transformation followed by a nonlinear mapping to predict the output.
We show that the two-layer model can "automatically" induce regularization and facilitate feature learning.
arXiv Detail & Related papers (2023-10-18T06:15:35Z) - Git Re-Basin: Merging Models modulo Permutation Symmetries [3.5450828190071655]
We show how simple algorithms can be used to fit large networks in practice.
We demonstrate the first (to our knowledge) demonstration of zero mode connectivity between independently trained models.
We also discuss shortcomings in the linear mode connectivity hypothesis.
arXiv Detail & Related papers (2022-09-11T10:44:27Z) - Linear Connectivity Reveals Generalization Strategies [54.947772002394736]
Some pairs of finetuned models have large barriers of increasing loss on the linear paths between them.
We find distinct clusters of models which are linearly connected on the test loss surface, but are disconnected from models outside the cluster.
Our work demonstrates how the geometry of the loss surface can guide models towards different functions.
arXiv Detail & Related papers (2022-05-24T23:43:02Z) - Cogradient Descent for Dependable Learning [64.02052988844301]
We propose a dependable learning based on Cogradient Descent (CoGD) algorithm to address the bilinear optimization problem.
CoGD is introduced to solve bilinear problems when one variable is with sparsity constraint.
It can also be used to decompose the association of features and weights, which further generalizes our method to better train convolutional neural networks (CNNs)
arXiv Detail & Related papers (2021-06-20T04:28:20Z) - Provable Model-based Nonlinear Bandit and Reinforcement Learning: Shelve
Optimism, Embrace Virtual Curvature [61.22680308681648]
We show that global convergence is statistically intractable even for one-layer neural net bandit with a deterministic reward.
For both nonlinear bandit and RL, the paper presents a model-based algorithm, Virtual Ascent with Online Model Learner (ViOL)
arXiv Detail & Related papers (2021-02-08T12:41:56Z) - Kernel and Rich Regimes in Overparametrized Models [69.40899443842443]
We show that gradient descent on overparametrized multilayer networks can induce rich implicit biases that are not RKHS norms.
We also demonstrate this transition empirically for more complex matrix factorization models and multilayer non-linear networks.
arXiv Detail & Related papers (2020-02-20T15:43:02Z) - Learning Bijective Feature Maps for Linear ICA [73.85904548374575]
We show that existing probabilistic deep generative models (DGMs) which are tailor-made for image data, underperform on non-linear ICA tasks.
To address this, we propose a DGM which combines bijective feature maps with a linear ICA model to learn interpretable latent structures for high-dimensional data.
We create models that converge quickly, are easy to train, and achieve better unsupervised latent factor discovery than flow-based models, linear ICA, and Variational Autoencoders on images.
arXiv Detail & Related papers (2020-02-18T17:58:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.