Incentivizing Truthful Collaboration in Heterogeneous Federated Learning
- URL: http://arxiv.org/abs/2412.00980v2
- Date: Wed, 05 Mar 2025 15:32:01 GMT
- Title: Incentivizing Truthful Collaboration in Heterogeneous Federated Learning
- Authors: Dimitar Chakarov, Nikita Tsoy, Kristian Minchev, Nikola Konstantinov,
- Abstract summary: Federated learning (FL) is a distributed collaborative learning method, where multiple clients learn together by sharing gradient updates instead of raw data.<n>We study the impact of data heterogeneity on clients' incentives to manipulate their updates.<n>We develop a payment rule that provably disincentivizes sending modified updates under the FedSGD protocol.
- Score: 3.3748750222488657
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Federated learning (FL) is a distributed collaborative learning method, where multiple clients learn together by sharing gradient updates instead of raw data. However, it is well-known that FL is vulnerable to manipulated updates from clients. In this work we study the impact of data heterogeneity on clients' incentives to manipulate their updates. First, we present heterogeneous collaborative learning scenarios where a client can modify their updates to be better off, and show that these manipulations can lead to diminishing model performance. To prevent such modifications, we formulate a game in which clients may misreport their gradient updates in order to "steer" the server model to their advantage. We develop a payment rule that provably disincentivizes sending modified updates under the FedSGD protocol. We derive explicit bounds on the clients' payments and the convergence rate of the global model, which allows us to study the trade-off between heterogeneity, payments and convergence. Finally, we provide an experimental evaluation of the effectiveness of our payment rule in the FedSGD, median-based aggregation FedSGD and FedAvg protocols on three tasks in computer vision and natural language processing. In all cases we find that our scheme successfully disincentivizes modifications.
Related papers
- Optimal Strategies for Federated Learning Maintaining Client Privacy [8.518748080337838]
This paper studies the tradeoff between model performance and communication of the Federated Learning system.
We show that training for one local epoch per global round of training gives optimal performance while preserving the same privacy budget.
arXiv Detail & Related papers (2025-01-24T12:34:38Z) - Personalized federated learning based on feature fusion [2.943623084019036]
Federated learning enables distributed clients to collaborate on training while storing their data locally to protect client privacy.
We propose a personalized federated learning approach called pFedPM.
In our process, we replace traditional gradient uploading with feature uploading, which helps reduce communication costs and allows for heterogeneous client models.
arXiv Detail & Related papers (2024-06-24T12:16:51Z) - FedStale: leveraging stale client updates in federated learning [10.850101961203748]
Federated learning algorithms are negatively affected by data heterogeneity and partial client participation.
This paper shows that, when some clients participate much less than others, aggregating updates with different levels of staleness can detrimentally affect the training process.
We introduce FedStale, a novel algorithm that updates the global model in each round through a convex combination of "fresh" updates from participating clients and "stale" updates from non-participating ones.
arXiv Detail & Related papers (2024-05-07T10:11:42Z) - FedImpro: Measuring and Improving Client Update in Federated Learning [77.68805026788836]
Federated Learning (FL) models often experience client drift caused by heterogeneous data.
We present an alternative perspective on client drift and aim to mitigate it by generating improved local models.
arXiv Detail & Related papers (2024-02-10T18:14:57Z) - FedLALR: Client-Specific Adaptive Learning Rates Achieve Linear Speedup
for Non-IID Data [54.81695390763957]
Federated learning is an emerging distributed machine learning method.
We propose a heterogeneous local variant of AMSGrad, named FedLALR, in which each client adjusts its learning rate.
We show that our client-specified auto-tuned learning rate scheduling can converge and achieve linear speedup with respect to the number of clients.
arXiv Detail & Related papers (2023-09-18T12:35:05Z) - Client-side Gradient Inversion Against Federated Learning from Poisoning [59.74484221875662]
Federated Learning (FL) enables distributed participants to train a global model without sharing data directly to a central server.
Recent studies have revealed that FL is vulnerable to gradient inversion attack (GIA), which aims to reconstruct the original training samples.
We propose Client-side poisoning Gradient Inversion (CGI), which is a novel attack method that can be launched from clients.
arXiv Detail & Related papers (2023-09-14T03:48:27Z) - Towards Instance-adaptive Inference for Federated Learning [80.38701896056828]
Federated learning (FL) is a distributed learning paradigm that enables multiple clients to learn a powerful global model by aggregating local training.
In this paper, we present a novel FL algorithm, i.e., FedIns, to handle intra-client data heterogeneity by enabling instance-adaptive inference in the FL framework.
Our experiments show that our FedIns outperforms state-of-the-art FL algorithms, e.g., a 6.64% improvement against the top-performing method with less than 15% communication cost on Tiny-ImageNet.
arXiv Detail & Related papers (2023-08-11T09:58:47Z) - Incentivizing Federated Learning [2.420324724613074]
This paper presents an incentive mechanism that encourages clients to contribute as much data as they can obtain.
Unlike previous incentive mechanisms, our approach does not monetize data.
We theoretically prove that clients will use as much data as they can possibly possess to participate in federated learning under certain conditions.
arXiv Detail & Related papers (2022-05-22T23:02:43Z) - Communication-Efficient Federated Learning with Accelerated Client Gradient [46.81082897703729]
Federated learning often suffers from slow and unstable convergence due to the heterogeneous characteristics of participating client datasets.
We propose a simple but effective federated learning framework, which improves the consistency across clients and facilitates the convergence of the server model.
We provide the theoretical convergence rate of our algorithm and demonstrate remarkable performance gains in terms of accuracy and communication efficiency.
arXiv Detail & Related papers (2022-01-10T05:31:07Z) - FedKD: Communication Efficient Federated Learning via Knowledge
Distillation [56.886414139084216]
Federated learning is widely used to learn intelligent models from decentralized data.
In federated learning, clients need to communicate their local model updates in each iteration of model learning.
We propose a communication efficient federated learning method based on knowledge distillation.
arXiv Detail & Related papers (2021-08-30T15:39:54Z) - Towards Fair Federated Learning with Zero-Shot Data Augmentation [123.37082242750866]
Federated learning has emerged as an important distributed learning paradigm, where a server aggregates a global model from many client-trained models while having no access to the client data.
We propose a novel federated learning system that employs zero-shot data augmentation on under-represented data to mitigate statistical heterogeneity and encourage more uniform accuracy performance across clients in federated networks.
We study two variants of this scheme, Fed-ZDAC (federated learning with zero-shot data augmentation at the clients) and Fed-ZDAS (federated learning with zero-shot data augmentation at the server).
arXiv Detail & Related papers (2021-04-27T18:23:54Z) - Toward Understanding the Influence of Individual Clients in Federated
Learning [52.07734799278535]
Federated learning allows clients to jointly train a global model without sending their private data to a central server.
We defined a new notion called em-Influence, quantify this influence over parameters, and proposed an effective efficient model to estimate this metric.
arXiv Detail & Related papers (2020-12-20T14:34:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.