Seldom: An Anonymity Network with Selective Deanonymization
- URL: http://arxiv.org/abs/2412.00990v1
- Date: Sun, 01 Dec 2024 22:31:31 GMT
- Title: Seldom: An Anonymity Network with Selective Deanonymization
- Authors: Eric Wagner, Roman Matzutt, Martin Henze,
- Abstract summary: We design Seldom, an anonymity network with integrated selective deanonymization.
Seldom enables law enforcement agencies to selectively access otherwise anonymized identities of misbehaving users.
Seldom provides a practical and deployable technical solution to the inherent problem of criminal activities in anonymity networks.
- Score: 4.701818757220776
- License:
- Abstract: While anonymity networks such as Tor provide invaluable privacy guarantees to society, they also enable all kinds of criminal activities. Consequently, many blameless citizens shy away from protecting their privacy using such technology for the fear of being associated with criminals. To grasp the potential for alternative privacy protection for those users, we design Seldom, an anonymity network with integrated selective deanonymization that disincentivizes criminal activity. Seldom enables law enforcement agencies to selectively access otherwise anonymized identities of misbehaving users, while providing technical guarantees preventing these access rights from being misused. Seldom further ensures translucency, as each access request is approved by a trustworthy consortium of impartial entities and eventually disclosed to the public (without interfering with ongoing investigations). To demonstrate Seldom's feasibility and applicability, we base our implementation on Tor, the most widely used anonymity network. Our evaluation indicates minimal latency, processing, and bandwidth overheads compared to Tor, while Seldom's main costs stem from storing flow records and encrypted identities. With at most 636 TB of storage required in total to retain the encrypted identifiers of a Tor-sized network for two years, Seldom provides a practical and deployable technical solution to the inherent problem of criminal activities in anonymity networks. As such, Seldom sheds new light on the potentials and limitations when integrating selective deanonymization into anonymity networks.
Related papers
- iFADIT: Invertible Face Anonymization via Disentangled Identity Transform [51.123936665445356]
Face anonymization aims to conceal the visual identity of a face to safeguard the individual's privacy.
This paper proposes a novel framework named iFADIT, an acronym for Invertible Face Anonymization via Disentangled Identity Transform.
arXiv Detail & Related papers (2025-01-08T10:08:09Z) - Collaborative Inference over Wireless Channels with Feature Differential Privacy [57.68286389879283]
Collaborative inference among multiple wireless edge devices has the potential to significantly enhance Artificial Intelligence (AI) applications.
transmitting extracted features poses a significant privacy risk, as sensitive personal data can be exposed during the process.
We propose a novel privacy-preserving collaborative inference mechanism, wherein each edge device in the network secures the privacy of extracted features before transmitting them to a central server for inference.
arXiv Detail & Related papers (2024-10-25T18:11:02Z) - Privacy-preserving Optics for Enhancing Protection in Face De-identification [60.110274007388135]
We propose a hardware-level face de-identification method to solve this vulnerability.
We also propose an anonymization framework that generates a new face using the privacy-preserving image, face heatmap, and a reference face image from a public dataset as input.
arXiv Detail & Related papers (2024-03-31T19:28:04Z) - Pudding: Private User Discovery in Anonymity Networks [9.474649136535705]
Pudding is a novel private user discovery protocol.
It hides contact relationships between users, prevents impersonation, and conceals which usernames are registered on the network.
Pudding can be deployed on Loopix and Nym without changes to the underlying anonymity network protocol.
arXiv Detail & Related papers (2023-11-17T19:06:08Z) - Privacy-Preserving Hierarchical Anonymization Framework over Encrypted Data [0.061446808540639365]
This study proposes a hierarchical k-anonymization framework using homomorphic encryption and secret sharing composed of two types of domains.
The experimental results show that connecting two domains can accelerate the anonymization process, indicating that the proposed secure hierarchical architecture is practical and efficient.
arXiv Detail & Related papers (2023-10-19T01:08:37Z) - Diff-Privacy: Diffusion-based Face Privacy Protection [58.1021066224765]
In this paper, we propose a novel face privacy protection method based on diffusion models, dubbed Diff-Privacy.
Specifically, we train our proposed multi-scale image inversion module (MSI) to obtain a set of SDM format conditional embeddings of the original image.
Based on the conditional embeddings, we design corresponding embedding scheduling strategies and construct different energy functions during the denoising process to achieve anonymization and visual identity information hiding.
arXiv Detail & Related papers (2023-09-11T09:26:07Z) - Cross-Network Social User Embedding with Hybrid Differential Privacy
Guarantees [81.6471440778355]
We propose a Cross-network Social User Embedding framework, namely DP-CroSUE, to learn the comprehensive representations of users in a privacy-preserving way.
In particular, for each heterogeneous social network, we first introduce a hybrid differential privacy notion to capture the variation of privacy expectations for heterogeneous data types.
To further enhance user embeddings, a novel cross-network GCN embedding model is designed to transfer knowledge across networks through those aligned users.
arXiv Detail & Related papers (2022-09-04T06:22:37Z) - Learnable Privacy-Preserving Anonymization for Pedestrian Images [27.178354411900127]
This paper studies a novel privacy-preserving anonymization problem for pedestrian images.
It preserves personal identity information (PII) for authorized models and prevents PII from being recognized by third parties.
We propose a joint learning reversible anonymization framework, which can reversibly generate full-body anonymous images.
arXiv Detail & Related papers (2022-07-24T07:04:16Z) - Privacy-Preserving Face Recognition with Learnable Privacy Budgets in
Frequency Domain [77.8858706250075]
This paper proposes a privacy-preserving face recognition method using differential privacy in the frequency domain.
Our method performs very well with several classical face recognition test sets.
arXiv Detail & Related papers (2022-07-15T07:15:36Z) - Statistical anonymity: Quantifying reidentification risks without
reidentifying users [4.103598036312231]
Data anonymization is an approach to privacy-preserving data release aimed at preventing participants reidentification.
Existing algorithms for enforcing $k$-anonymity in the released data assume that the curator performing the anonymization has complete access to the original data.
This paper explores ideas for reducing the trust that must be placed in the curator, while still maintaining a statistical notion of $k$-anonymity.
arXiv Detail & Related papers (2022-01-28T18:12:44Z) - Experimental implementation of secure anonymous protocols on an
eight-user quantum network [2.5516484173114855]
We experimentally demonstrate 5 information-theoretically secure anonymity protocols on an 8 user city-wide quantum network.
For a network of $n$ users, the protocols retain anonymity for the sender, given less than $n-2$ users are dishonest.
arXiv Detail & Related papers (2020-11-18T19:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.