Superhypergraph Neural Networks and Plithogenic Graph Neural Networks: Theoretical Foundations
- URL: http://arxiv.org/abs/2412.01176v1
- Date: Mon, 02 Dec 2024 06:33:02 GMT
- Title: Superhypergraph Neural Networks and Plithogenic Graph Neural Networks: Theoretical Foundations
- Authors: Takaaki Fujita,
- Abstract summary: Hypergraphs extend traditional graphs by allowing edges to connect multiple nodes, while superhypergraphs further generalize this concept to represent even more complex relationships.
Graph Neural Networks (GNNs), a well-established framework, have recently been extended to Hypergraph Neural Networks (HGNNs)
This paper establishes the theoretical foundation for the development of SuperHyperGraph Neural Networks (SHGNNs) and Plithogenic Graph Neural Networks.
- Score: 0.0
- License:
- Abstract: Hypergraphs extend traditional graphs by allowing edges to connect multiple nodes, while superhypergraphs further generalize this concept to represent even more complex relationships. Neural networks, inspired by biological systems, are widely used for tasks such as pattern recognition, data classification, and prediction. Graph Neural Networks (GNNs), a well-established framework, have recently been extended to Hypergraph Neural Networks (HGNNs), with their properties and applications being actively studied. The Plithogenic Graph framework enhances graph representations by integrating multi-valued attributes, as well as membership and contradiction functions, enabling the detailed modeling of complex relationships. In the context of handling uncertainty, concepts such as Fuzzy Graphs and Neutrosophic Graphs have gained prominence. It is well established that Plithogenic Graphs serve as a generalization of both Fuzzy Graphs and Neutrosophic Graphs. Furthermore, the Fuzzy Graph Neural Network has been proposed and is an active area of research. This paper establishes the theoretical foundation for the development of SuperHyperGraph Neural Networks (SHGNNs) and Plithogenic Graph Neural Networks, expanding the applicability of neural networks to these advanced graph structures. While mathematical generalizations and proofs are presented, future computational experiments are anticipated.
Related papers
- Revisiting Graph Neural Networks on Graph-level Tasks: Comprehensive Experiments, Analysis, and Improvements [54.006506479865344]
We propose a unified evaluation framework for graph-level Graph Neural Networks (GNNs)
This framework provides a standardized setting to evaluate GNNs across diverse datasets.
We also propose a novel GNN model with enhanced expressivity and generalization capabilities.
arXiv Detail & Related papers (2025-01-01T08:48:53Z) - Introduction to Graph Neural Networks: A Starting Point for Machine Learning Engineers [0.0]
Graph neural networks are deep neural networks designed for graphs with attributes attached to nodes or edges.
This survey introduces graph neural networks through the encoder-decoder framework and provides examples of decoders for a range of graph analytic tasks.
arXiv Detail & Related papers (2024-12-27T03:13:02Z) - Knowledge Enhanced Graph Neural Networks for Graph Completion [0.0]
Knowledge Enhanced Graph Neural Networks (KeGNN) is a neuro-symbolic framework for graph completion.
KeGNN consists of a graph neural network as a base upon which knowledge enhancement layers are stacked.
We instantiate KeGNN in conjunction with two state-of-the-art graph neural networks, Graph Convolutional Networks and Graph Attention Networks.
arXiv Detail & Related papers (2023-03-27T07:53:43Z) - Learning Graph Structure from Convolutional Mixtures [119.45320143101381]
We propose a graph convolutional relationship between the observed and latent graphs, and formulate the graph learning task as a network inverse (deconvolution) problem.
In lieu of eigendecomposition-based spectral methods, we unroll and truncate proximal gradient iterations to arrive at a parameterized neural network architecture that we call a Graph Deconvolution Network (GDN)
GDNs can learn a distribution of graphs in a supervised fashion, perform link prediction or edge-weight regression tasks by adapting the loss function, and they are inherently inductive.
arXiv Detail & Related papers (2022-05-19T14:08:15Z) - Hyperbolic Graph Neural Networks: A Review of Methods and Applications [55.5502008501764]
Graph neural networks generalize conventional neural networks to graph-structured data.
The performance of Euclidean models in graph-related learning is still bounded and limited by the representation ability of Euclidean geometry.
Recently, hyperbolic space has gained increasing popularity in processing graph data with tree-like structure and power-law distribution.
arXiv Detail & Related papers (2022-02-28T15:08:48Z) - Capsule Graph Neural Networks with EM Routing [8.632437524560133]
This paper proposed novel Capsule Graph Neural Networks that use the EM routing mechanism (CapsGNNEM) to generate high-quality graph embeddings.
Experimental results on a number of real-world graph datasets demonstrate that the proposed CapsGNNEM outperforms nine state-of-the-art models in graph classification tasks.
arXiv Detail & Related papers (2021-10-18T06:23:37Z) - Learning Graph Representations [0.0]
Graph Neural Networks (GNNs) are efficient ways to get insight into large dynamic graph datasets.
In this paper, we discuss the graph convolutional neural networks graph autoencoders and Social-temporal graph neural networks.
arXiv Detail & Related papers (2021-02-03T12:07:55Z) - Towards Deeper Graph Neural Networks [63.46470695525957]
Graph convolutions perform neighborhood aggregation and represent one of the most important graph operations.
Several recent studies attribute this performance deterioration to the over-smoothing issue.
We propose Deep Adaptive Graph Neural Network (DAGNN) to adaptively incorporate information from large receptive fields.
arXiv Detail & Related papers (2020-07-18T01:11:14Z) - Graph Structure of Neural Networks [104.33754950606298]
We show how the graph structure of neural networks affect their predictive performance.
A "sweet spot" of relational graphs leads to neural networks with significantly improved predictive performance.
Top-performing neural networks have graph structure surprisingly similar to those of real biological neural networks.
arXiv Detail & Related papers (2020-07-13T17:59:31Z) - Geometrically Principled Connections in Graph Neural Networks [66.51286736506658]
We argue geometry should remain the primary driving force behind innovation in the emerging field of geometric deep learning.
We relate graph neural networks to widely successful computer graphics and data approximation models: radial basis functions (RBFs)
We introduce affine skip connections, a novel building block formed by combining a fully connected layer with any graph convolution operator.
arXiv Detail & Related papers (2020-04-06T13:25:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.