論文の概要: Memory-Efficient Training for Deep Speaker Embedding Learning in Speaker Verification
- arxiv url: http://arxiv.org/abs/2412.01195v1
- Date: Mon, 02 Dec 2024 06:57:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-04 15:41:54.350559
- Title: Memory-Efficient Training for Deep Speaker Embedding Learning in Speaker Verification
- Title(参考訳): 話者検証における深層話者埋め込み学習のための記憶効率向上学習
- Authors: Bei Liu, Yanmin Qian,
- Abstract要約: 資源制約のあるシナリオにおける深層話者埋め込み学習のためのメモリ効率のトレーニング戦略について検討する。
アクティベーションのために、中間アクティベーションを格納する必要がない2種類の可逆ニューラルネットワークを設計する。
状態に対して、元の32ビット浮動小数点値を動的ツリーベースの8ビットデータ型に置き換える動的量子化手法を導入する。
- 参考スコア(独自算出の注目度): 50.596077598766975
- License:
- Abstract: Recent speaker verification (SV) systems have shown a trend toward adopting deeper speaker embedding extractors. Although deeper and larger neural networks can significantly improve performance, their substantial memory requirements hinder training on consumer GPUs. In this paper, we explore a memory-efficient training strategy for deep speaker embedding learning in resource-constrained scenarios. Firstly, we conduct a systematic analysis of GPU memory allocation during SV system training. Empirical observations show that activations and optimizer states are the main sources of memory consumption. For activations, we design two types of reversible neural networks which eliminate the need to store intermediate activations during back-propagation, thereby significantly reducing memory usage without performance loss. For optimizer states, we introduce a dynamic quantization approach that replaces the original 32-bit floating-point values with a dynamic tree-based 8-bit data type. Experimental results on VoxCeleb demonstrate that the reversible variants of ResNets and DF-ResNets can perform training without the need to cache activations in GPU memory. In addition, the 8-bit versions of SGD and Adam save 75% of memory costs while maintaining performance compared to their 32-bit counterparts. Finally, a detailed comparison of memory usage and performance indicates that our proposed models achieve up to 16.2x memory savings, with nearly identical parameters and performance compared to the vanilla systems. In contrast to the previous need for multiple high-end GPUs such as the A100, we can effectively train deep speaker embedding extractors with just one or two consumer-level 2080Ti GPUs.
- Abstract(参考訳): 最近の話者検証システム(SV)は、より深い話者埋め込み抽出器を採用する傾向を示している。
より深く、より大きなニューラルネットワークは、パフォーマンスを著しく向上させることができるが、そのかなりのメモリ要件は、コンシューマGPUのトレーニングを妨げている。
本稿では,資源制約のあるシナリオにおける深層話者埋め込み学習のためのメモリ効率のトレーニング戦略について検討する。
まず,SVシステムトレーニング中のGPUメモリ割り当ての系統的解析を行う。
実証観測により、メモリ消費の主な原因はアクティベーションとオプティマイザ状態であることが示された。
アクティベーションのために、バックプロパゲーション中に中間アクティベーションを保存する必要がなくなる2種類の可逆ニューラルネットワークを設計する。
最適化状態に対して、元の32ビット浮動小数点値を動的ツリーベースの8ビットデータ型に置き換える動的量子化手法を導入する。
VoxCelebの実験結果によると、ResNetsとDF-ResNetsの可逆的な変種は、GPUメモリにアクティベーションをキャッシュすることなく、トレーニングを実行することができる。
さらに、SGDとAdamの8ビットバージョンは、メモリコストの75%を節約し、32ビットバージョンと比較して性能を維持している。
最後に、メモリ使用量と性能の詳細な比較により、提案したモデルがバニラシステムとほぼ同じパラメータと性能で最大16.2倍のメモリ節約を達成することを示す。
A100のような複数のハイエンドGPUを必要とするのとは対照的に、1つか2つのコンシューマレベルの2080Ti GPUで、ディープスピーカー埋め込み抽出器を効果的に訓練することができる。
関連論文リスト
- Less Memory Means smaller GPUs: Backpropagation with Compressed Activations [1.7065506903618906]
深層ニューラルネットワーク(DNN)の規模は、計算リソースの要件が等しく急速に増大している。
最近の多くのアーキテクチャ、特にLarge Language Modelsは、何千ものアクセラレーターを持つスーパーコンピュータを使って訓練されなければならない。
このアプローチにより、より長いトレーニングスケジュールのコストで、ピークメモリ使用量を29%削減することが可能になります。
論文 参考訳(メタデータ) (2024-09-18T11:57:05Z) - Efficiently Training 7B LLM with 1 Million Sequence Length on 8 GPUs [24.066283519769968]
大規模言語モデル(LLM)は、よりクリエイティブなアプリケーションを促進するために、拡張コンテキスト長を使用して訓練されている。
本稿では,メモリ管理を微粒化するための新しいフレームワークであるMEMOを提案する。
我々は,MEMOがMegatron-LMやDeepSpeedと比較して平均2.42倍,2.26倍のMFUを達成することを示す。
論文 参考訳(メタデータ) (2024-07-16T18:59:49Z) - Dynamic neural network with memristive CIM and CAM for 2D and 3D vision [57.6208980140268]
本稿では,memristor を用いた意味記憶に基づく動的ニューラルネットワーク (DNN) を提案する。
ネットワークは、受信したデータとセマンティックベクターとして格納された過去の経験を関連付ける。
MNISTとModelNetのデータセットから画像と3Dポイントを分類するために、ResNetとPointNet++の40nmのmemristorマクロを用いて、我々の共同設計を検証する。
論文 参考訳(メタデータ) (2024-07-12T04:55:57Z) - GaLore: Memory-Efficient LLM Training by Gradient Low-Rank Projection [133.45193150403537]
LLM(Large Language Models)のトレーニングは、重み付けやGPU状態の増大によって、メモリ上の重大な問題が発生する。
本研究では,メモリ効率のトレーニング戦略としてグラディエント・ローランド・プロジェクション(GaLore)を提案する。
私たちの8ビットのGaLoreは、BF16ベースラインと比較して、メモリを82.5%、トレーニング総メモリを63.3%削減します。
論文 参考訳(メタデータ) (2024-03-06T07:29:57Z) - FULL-W2V: Fully Exploiting Data Reuse for W2V on GPU-Accelerated Systems [5.572152653851948]
FULL-W2Vは、W2Vアルゴリズムにおけるデータ再利用の機会を利用して、低メモリレベルへのアクセスを減らし、時間的局所性を改善する。
我々のプロトタイプ実装では、Nvidia Pascal P100からVolta V100への移植時に2.97倍の高速化を実現し、同じ埋め込み品質のV100カードでは、最先端の5.72倍の性能を発揮する。
論文 参考訳(メタデータ) (2023-12-12T21:22:07Z) - GEAR: A GPU-Centric Experience Replay System for Large Reinforcement
Learning Models [32.23853007467266]
GEARは、大きなシーケンスモデル(トランスなど)でスケーラブルな強化学習(RL)を実現するように設計されている。
ホストメモリへのゼロコピーアクセスを使用してトラジェクトリを収集できるGPUカーネルと、InfiniBand上のリモート指向メモリアクセスを備える。
Gearは、最先端の大規模RLモデルをトレーニングする際に、Reverbよりも最大6倍パフォーマンスレベルを達成することができる。
論文 参考訳(メタデータ) (2023-10-08T15:39:43Z) - On-Device Training Under 256KB Memory [62.95579393237751]
本稿では,256KBのメモリでデバイス上でのトレーニングを可能にするアルゴリズム・システム協調設計フレームワークを提案する。
私たちのフレームワークは256KBと1MBのFlashで畳み込みニューラルネットワークのデバイス上での小さなトレーニングを可能にする最初のソリューションです。
論文 参考訳(メタデータ) (2022-06-30T17:59:08Z) - MCUNetV2: Memory-Efficient Patch-based Inference for Tiny Deep Learning [72.80896338009579]
メモリボトルネックは畳み込みニューラルネットワーク(CNN)の設計における不均衡なメモリ分布に起因する。
本稿では,ピークメモリを大幅に削減するパッチ・バイ・パッチ・推論スケジューリングを提案する。
ニューラルアーキテクチャサーチによるプロセスを自動化し、ニューラルアーキテクチャと推論スケジューリングを共同で最適化し、MCUNetV2に導いた。
論文 参考訳(メタデータ) (2021-10-28T17:58:45Z) - Improving Computational Efficiency in Visual Reinforcement Learning via
Stored Embeddings [89.63764845984076]
効率的な強化学習のためのストアド埋め込み(SEER)について紹介します。
SEERは、既存の非政治深層強化学習方法の簡単な修正です。
計算とメモリを大幅に節約しながら、SEERがRLizableエージェントのパフォーマンスを低下させないことを示します。
論文 参考訳(メタデータ) (2021-03-04T08:14:10Z) - Robust High-dimensional Memory-augmented Neural Networks [13.82206983716435]
メモリ拡張ニューラルネットワークは、これらの問題を克服するために、明示的なメモリでニューラルネットワークを強化する。
この明示的なメモリへのアクセスは、各個々のメモリエントリを含むソフト読み取りおよび書き込み操作を介して行われる。
本稿では,高次元(HD)ベクトル上でのアナログインメモリ計算を行う明示メモリとして,計算メモリユニットを用いた頑健なアーキテクチャを提案する。
論文 参考訳(メタデータ) (2020-10-05T12:01:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。