GraphOTTER: Evolving LLM-based Graph Reasoning for Complex Table Question Answering
- URL: http://arxiv.org/abs/2412.01230v1
- Date: Mon, 02 Dec 2024 07:49:23 GMT
- Title: GraphOTTER: Evolving LLM-based Graph Reasoning for Complex Table Question Answering
- Authors: Qianlong Li, Chen Huang, Shuai Li, Yuanxin Xiang, Deng Xiong, Wenqiang Lei,
- Abstract summary: Complex Table Question Answering involves providing accurate answers to specific questions based on intricate tables that exhibit complex layouts and flexible header locations.<n>We propose GraphOTTER that explicitly establishes the reasoning process to pinpoint the correct answers.<n>It then conducts step-by-step reasoning on the graph, with each step guided by a set of pre-defined intermediate reasoning actions.
- Score: 19.59852014700167
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Complex Table Question Answering involves providing accurate answers to specific questions based on intricate tables that exhibit complex layouts and flexible header locations. Despite considerable progress having been made in the LLM era, the reasoning processes of existing methods are often implicit, feeding the entire table into prompts, making it difficult to effectively filter out irrelevant information in the table. To this end, we propose GraphOTTER that explicitly establishes the reasoning process to pinpoint the correct answers. In particular, GraphOTTER leverages a graph-based representation, transforming the complex table into an undirected graph. It then conducts step-by-step reasoning on the graph, with each step guided by a set of pre-defined intermediate reasoning actions. As such, it constructs a clear reasoning path and effectively identifies the answer to a given question. Comprehensive experiments on two benchmark datasets and two LLM backbones demonstrate the effectiveness of GraphOTTER. Further analysis indicates that its success may be attributed to the ability to efficiently filter out irrelevant information, thereby focusing the reasoning process on the most pertinent data. Our code and experimental datasets are available at \url{https://github.com/JDing0521/GraphOTTER}.
Related papers
- GraphRAFT: Retrieval Augmented Fine-Tuning for Knowledge Graphs on Graph Databases [0.0]
GraphRAFT is a retrieve-and-reason framework that finetunes LLMs to generate provably correct Cypher queries.
Our method is the first such solution that can be taken off-the-shelf and used on Knowledge Graphs stored in native graph DBs.
arXiv Detail & Related papers (2025-04-07T20:16:22Z) - GTR: Graph-Table-RAG for Cross-Table Question Answering [53.11230952572134]
We propose the first Graph-Table-RAG framework, namely GTR, which reorganizes table corpora into a heterogeneous graph.
GTR exhibits superior cross-table question-answering performance while maintaining high deployment efficiency, demonstrating its real-world practical applicability.
arXiv Detail & Related papers (2025-04-02T04:24:41Z) - Plan-over-Graph: Towards Parallelable LLM Agent Schedule [53.834646147919436]
Large Language Models (LLMs) have demonstrated exceptional abilities in reasoning for task planning.
This paper introduces a novel paradigm, plan-over-graph, in which the model first decomposes a real-life textual task into executable subtasks and constructs an abstract task graph.
The model then understands this task graph as input and generates a plan for parallel execution.
arXiv Detail & Related papers (2025-02-20T13:47:51Z) - GraphSOS: Graph Sampling and Order Selection to Help LLMs Understand Graphs Better [13.742220809751627]
GraphSOS is a novel framework for converting graph data into natural language text.
It features an Order Selector Module to ensure proper serialization order of the graph and a Subgraph Sampling Module to sample subgraphs with better structure for better reasoning.
Experiments on multiple datasets for node classification and graph question-answering demonstrate that GraphSOS improves LLMs' performance and ability on graph tasks.
arXiv Detail & Related papers (2025-01-24T11:55:57Z) - What Do LLMs Need to Understand Graphs: A Survey of Parametric Representation of Graphs [69.48708136448694]
Large language models (LLMs) are reorganizing in the AI community for their expected reasoning and inference abilities.
We believe this kind of parametric representation of graphs, graph laws, can be a solution for making LLMs understand graph data as the input.
arXiv Detail & Related papers (2024-10-16T00:01:31Z) - Graph Chain-of-Thought: Augmenting Large Language Models by Reasoning on Graphs [60.71360240206726]
Large language models (LLMs) suffer from hallucinations, especially on knowledge-intensive tasks.
Existing works propose to augment LLMs with individual text units retrieved from external knowledge corpora.
We propose a framework called Graph Chain-of-thought (Graph-CoT) to augment LLMs with graphs by encouraging LLMs to reason on the graph iteratively.
arXiv Detail & Related papers (2024-04-10T15:41:53Z) - G-Retriever: Retrieval-Augmented Generation for Textual Graph Understanding and Question Answering [61.93058781222079]
We develop a flexible question-answering framework targeting real-world textual graphs.
We introduce the first retrieval-augmented generation (RAG) approach for general textual graphs.
G-Retriever performs RAG over a graph by formulating this task as a Prize-Collecting Steiner Tree optimization problem.
arXiv Detail & Related papers (2024-02-12T13:13:04Z) - Graph Elicitation for Guiding Multi-Step Reasoning in Large Language Models [16.432208223793666]
Chain-of-Thought prompting along with sub-question generation and answering has enhanced multi-step reasoning capabilities.
We propose a GE-Reasoning method, which directs Large Language Models to generate proper sub-questions and corresponding answers.
Our approach outperforms previous CoT prompting methods and their variants on multi-hop question answering benchmark datasets.
arXiv Detail & Related papers (2023-11-16T10:36:08Z) - Integrating Graphs with Large Language Models: Methods and Prospects [68.37584693537555]
Large language models (LLMs) have emerged as frontrunners, showcasing unparalleled prowess in diverse applications.
Merging the capabilities of LLMs with graph-structured data has been a topic of keen interest.
This paper bifurcates such integrations into two predominant categories.
arXiv Detail & Related papers (2023-10-09T07:59:34Z) - Graph-ToolFormer: To Empower LLMs with Graph Reasoning Ability via
Prompt Augmented by ChatGPT [10.879701971582502]
We aim to develop a large language model (LLM) with the reasoning ability on complex graph data.
Inspired by the latest ChatGPT and Toolformer models, we propose the Graph-ToolFormer framework to teach LLMs themselves with prompts augmented by ChatGPT to use external graph reasoning API tools.
arXiv Detail & Related papers (2023-04-10T05:25:54Z) - Neural Graph Reasoning: Complex Logical Query Answering Meets Graph
Databases [63.96793270418793]
Complex logical query answering (CLQA) is a recently emerged task of graph machine learning.
We introduce the concept of Neural Graph Database (NGDBs)
NGDB consists of a Neural Graph Storage and a Neural Graph Engine.
arXiv Detail & Related papers (2023-03-26T04:03:37Z) - Retrieving Complex Tables with Multi-Granular Graph Representation
Learning [20.72341939868327]
The task of natural language table retrieval seeks to retrieve semantically relevant tables based on natural language queries.
Existing learning systems treat tables as plain text based on the assumption that tables are structured as dataframes.
We propose Graph-based Table Retrieval (GTR), a generalizable NLTR framework with multi-granular graph representation learning.
arXiv Detail & Related papers (2021-05-04T20:19:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.