論文の概要: Embryo 2.0: Merging Synthetic and Real Data for Advanced AI Predictions
- arxiv url: http://arxiv.org/abs/2412.01255v1
- Date: Mon, 02 Dec 2024 08:24:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-04 15:42:39.436292
- Title: Embryo 2.0: Merging Synthetic and Real Data for Advanced AI Predictions
- Title(参考訳): Embryo 2.0: 高度なAI予測のための合成と実データの統合
- Authors: Oriana Presacan, Alexandru Dorobantiu, Vajira Thambawita, Michael A. Riegler, Mette H. Stensen, Mario Iliceto, Alexandru C. Aldea, Akriti Sharma,
- Abstract要約: 2つのデータセットを使用して、2つの生成モデルをトレーニングします。
2-cell, 4-cell, 8-cell, morula, blastocyst など, 様々な細胞で合成胚画像を生成する。
これらは実画像と組み合わせて、胚細胞ステージ予測のための分類モデルを訓練した。
- 参考スコア(独自算出の注目度): 69.07284335967019
- License:
- Abstract: Accurate embryo morphology assessment is essential in assisted reproductive technology for selecting the most viable embryo. Artificial intelligence has the potential to enhance this process. However, the limited availability of embryo data presents challenges for training deep learning models. To address this, we trained two generative models using two datasets, one we created and made publicly available, and one existing public dataset, to generate synthetic embryo images at various cell stages, including 2-cell, 4-cell, 8-cell, morula, and blastocyst. These were combined with real images to train classification models for embryo cell stage prediction. Our results demonstrate that incorporating synthetic images alongside real data improved classification performance, with the model achieving 97% accuracy compared to 95% when trained solely on real data. Notably, even when trained exclusively on synthetic data and tested on real data, the model achieved a high accuracy of 94%. Furthermore, combining synthetic data from both generative models yielded better classification results than using data from a single generative model. Four embryologists evaluated the fidelity of the synthetic images through a Turing test, during which they annotated inaccuracies and offered feedback. The analysis showed the diffusion model outperformed the generative adversarial network model, deceiving embryologists 66.6% versus 25.3% and achieving lower Frechet inception distance scores.
- Abstract(参考訳): 正確な胚形態評価は、最も有効な胚を選択するために補助的生殖技術において不可欠である。
人工知能はこのプロセスを強化する可能性がある。
しかし、胚データの可用性は限られており、ディープラーニングモデルを訓練する上での課題が提示される。
そこで我々は, 2細胞, 4細胞, 8細胞, モーラ, ブラストシストなど, 様々な細胞レベルで合成胚画像を生成するために, 2つのデータセットを用いて2つの生成モデルを訓練した。
これらは実画像と組み合わせて、胚細胞ステージ予測のための分類モデルを訓練した。
その結果,実データと合成画像を組み合わせることで分類性能が向上し,実データのみを訓練した場合の95%に比べて97%の精度が得られた。
特に、合成データのみを訓練し、実際のデータでテストしても、そのモデルは94%の精度で達成された。
さらに, 2つの生成モデルからの合成データを組み合わせることで, 単一の生成モデルからのデータを使用するよりも, より優れた分類結果を得た。
4人の胚学者がチューリングテストを通じて合成画像の忠実さを評価し、その間に不正確さを注釈し、フィードバックを提供した。
この分析は、拡散モデルが生成的敵ネットワークモデルより優れており、胚学者は66.6%、25.3%、フレシェの開始距離スコアは低い。
関連論文リスト
- Can Medical Vision-Language Pre-training Succeed with Purely Synthetic Data? [8.775988650381397]
医療ビジョン言語による事前トレーニングモデルのトレーニングには、ペアで高品質な画像テキストデータを備えたデータセットが必要である。
近年の大規模言語モデルの進歩により,大規模合成画像テキストペアの生成が可能になった。
多様な高品質な合成データセットを構築するための自動パイプラインを提案する。
論文 参考訳(メタデータ) (2024-10-17T13:11:07Z) - Evaluating Utility of Memory Efficient Medical Image Generation: A Study on Lung Nodule Segmentation [0.0]
本研究は,合成医用画像を生成するためのメモリ効率のパッチワイド拡散確率モデル(DDPM)を提案する。
本手法は, メモリ制約を効率的に管理しながら, 結節分割による高能率合成画像を生成する。
本手法は,合成データのみに基づくセグメンテーションモデルのトレーニングと,合成画像を用いた実世界のトレーニングデータの拡張の2つのシナリオで評価する。
論文 参考訳(メタデータ) (2024-10-16T13:20:57Z) - Is Synthetic Data all We Need? Benchmarking the Robustness of Models Trained with Synthetic Images [11.70758559522617]
本稿では,3種類の合成クローンモデル,すなわち,教師付き,自己監督型,マルチモーダル型の最初のベンチマークを行う。
合成クローンは、実際のデータで訓練されたモデルよりも、敵対的および現実的なノイズの影響を受けやすいことがわかりました。
論文 参考訳(メタデータ) (2024-05-30T20:37:34Z) - Is Synthetic Image Useful for Transfer Learning? An Investigation into Data Generation, Volume, and Utilization [62.157627519792946]
ブリッジドトランスファー(ブリッジドトランスファー)と呼ばれる新しいフレームワークを導入する。このフレームワークは、当初、トレーニング済みモデルの微調整に合成画像を使用し、転送性を向上させる。
合成画像と実画像のスタイルアライメントを改善するために,データセットスタイルの逆変換方式を提案する。
提案手法は10の異なるデータセットと5つの異なるモデルで評価され、一貫した改善が示されている。
論文 参考訳(メタデータ) (2024-03-28T22:25:05Z) - Derm-T2IM: Harnessing Synthetic Skin Lesion Data via Stable Diffusion
Models for Enhanced Skin Disease Classification using ViT and CNN [1.0499611180329804]
我々は、最近の数発学習の成功を拡大して、拡張されたデータ変換技術を統合することを目指している。
最先端機械学習モデルのトレーニングパイプラインに新たに生成された合成データを組み込むことによる影響について検討する。
論文 参考訳(メタデータ) (2024-01-10T13:46:03Z) - On the Stability of Iterative Retraining of Generative Models on their own Data [56.153542044045224]
混合データセットに対する生成モデルの訓練が与える影響について検討する。
まず、初期生成モデルがデータ分布を十分に近似する条件下で反復学習の安定性を実証する。
我々は、正規化フローと最先端拡散モデルを繰り返し訓練することにより、合成画像と自然画像の両方に関する我々の理論を実証的に検証する。
論文 参考訳(メタデータ) (2023-09-30T16:41:04Z) - Exploring the Effectiveness of Dataset Synthesis: An application of
Apple Detection in Orchards [68.95806641664713]
本研究では,リンゴ樹の合成データセットを生成するための安定拡散2.1-baseの有用性について検討する。
我々は、現実世界のリンゴ検出データセットでリンゴを予測するために、YOLOv5mオブジェクト検出モデルを訓練する。
その結果、実世界の画像でトレーニングされたベースラインモデルと比較して、生成データでトレーニングされたモデルはわずかに性能が劣っていることがわかった。
論文 参考訳(メタデータ) (2023-06-20T09:46:01Z) - Differentially Private Diffusion Models Generate Useful Synthetic Images [53.94025967603649]
近年の研究では、いくつかの拡散モデルの出力がトレーニングデータのプライバシを保持していないことが報告されている。
CIFAR-10 と Camelyon17 のSOTA 結果を得た。
以上の結果から,差分プライバシーで微調整された拡散モデルが有用かつ実証可能なプライベートな合成データを生成できることが示唆された。
論文 参考訳(メタデータ) (2023-02-27T15:02:04Z) - Is synthetic data from generative models ready for image recognition? [69.42645602062024]
本研究では,最新のテキスト・画像生成モデルから生成した合成画像が,画像認識タスクにどのように利用できるかを検討した。
本稿では,既存の生成モデルからの合成データの強大さと欠点を示し,認識タスクに合成データを適用するための戦略を提案する。
論文 参考訳(メタデータ) (2022-10-14T06:54:24Z) - Synthetic Data for Model Selection [2.4499092754102874]
合成データはモデル選択に有用であることを示す。
そこで本研究では,実領域に適合する合成誤差推定をキャリブレーションする新しい手法を提案する。
論文 参考訳(メタデータ) (2021-05-03T09:52:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。