Morphological-Symmetry-Equivariant Heterogeneous Graph Neural Network for Robotic Dynamics Learning
- URL: http://arxiv.org/abs/2412.01297v1
- Date: Mon, 02 Dec 2024 09:10:37 GMT
- Title: Morphological-Symmetry-Equivariant Heterogeneous Graph Neural Network for Robotic Dynamics Learning
- Authors: Fengze Xie, Sizhe Wei, Yue Song, Yisong Yue, Lu Gan,
- Abstract summary: We present a morphological-symmetry-equivariant heterogeneous graph neural network, namely MS-HGNN, for robotic dynamics learning.
MS-HGNN integrates robotic kinematic structures and morphological symmetries into a single graph network.
- Score: 31.728300637833748
- License:
- Abstract: We present a morphological-symmetry-equivariant heterogeneous graph neural network, namely MS-HGNN, for robotic dynamics learning, that integrates robotic kinematic structures and morphological symmetries into a single graph network. These structural priors are embedded into the learning architecture as constraints, ensuring high generalizability, sample and model efficiency. The proposed MS-HGNN is a versatile and general architecture that is applicable to various multi-body dynamic systems and a wide range of dynamics learning problems. We formally prove the morphological-symmetry-equivariant property of our MS-HGNN and validate its effectiveness across multiple quadruped robot learning problems using both real-world and simulated data. Our code is made publicly available at https://github.com/lunarlab-gatech/MorphSym-HGNN/.
Related papers
- SINDyG: Sparse Identification of Nonlinear Dynamical Systems from Graph-Structured Data [0.27624021966289597]
We develop a new method called Sparse Identification of Dynamical Systems from Graph-structured data (SINDyG)
SINDyG incorporates the network structure into sparse regression to identify model parameters that explain the underlying network dynamics.
Our experiments validate the improved accuracy and simplicity of discovered network dynamics.
arXiv Detail & Related papers (2024-09-02T17:51:37Z) - SympGNNs: Symplectic Graph Neural Networks for identifiying high-dimensional Hamiltonian systems and node classification [4.275204859038151]
Symplectic Graph Neural Networks (SympGNNs) can effectively handle system identification in high-dimensional Hamiltonian systems.
We show that SympGNN can overcome the oversmoothing and heterophily problems, two key challenges in the field of graph neural networks.
arXiv Detail & Related papers (2024-08-29T16:47:58Z) - Enhancing lattice kinetic schemes for fluid dynamics with Lattice-Equivariant Neural Networks [79.16635054977068]
We present a new class of equivariant neural networks, dubbed Lattice-Equivariant Neural Networks (LENNs)
Our approach develops within a recently introduced framework aimed at learning neural network-based surrogate models Lattice Boltzmann collision operators.
Our work opens towards practical utilization of machine learning-augmented Lattice Boltzmann CFD in real-world simulations.
arXiv Detail & Related papers (2024-05-22T17:23:15Z) - Bond Graphs for multi-physics informed Neural Networks for multi-variate time series [6.775534755081169]
Existing methods are not adapted to tasks with complex multi-physical and multi-domain phenomena.
We propose a Neural Bond graph (NBgE) producing multi-physics-informed representations that can be fed into any task-specific model.
arXiv Detail & Related papers (2024-05-22T12:30:25Z) - Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
We propose to represent neural networks as computational graphs of parameters.
Our approach enables a single model to encode neural computational graphs with diverse architectures.
We showcase the effectiveness of our method on a wide range of tasks, including classification and editing of implicit neural representations.
arXiv Detail & Related papers (2024-03-18T18:01:01Z) - Mechanistic Neural Networks for Scientific Machine Learning [58.99592521721158]
We present Mechanistic Neural Networks, a neural network design for machine learning applications in the sciences.
It incorporates a new Mechanistic Block in standard architectures to explicitly learn governing differential equations as representations.
Central to our approach is a novel Relaxed Linear Programming solver (NeuRLP) inspired by a technique that reduces solving linear ODEs to solving linear programs.
arXiv Detail & Related papers (2024-02-20T15:23:24Z) - Equivariant Matrix Function Neural Networks [1.8717045355288808]
We introduce Matrix Function Neural Networks (MFNs), a novel architecture that parameterizes non-local interactions through analytic matrix equivariant functions.
MFNs is able to capture intricate non-local interactions in quantum systems, paving the way to new state-of-the-art force fields.
arXiv Detail & Related papers (2023-10-16T14:17:00Z) - Learning Physical Dynamics with Subequivariant Graph Neural Networks [99.41677381754678]
Graph Neural Networks (GNNs) have become a prevailing tool for learning physical dynamics.
Physical laws abide by symmetry, which is a vital inductive bias accounting for model generalization.
Our model achieves on average over 3% enhancement in contact prediction accuracy across 8 scenarios on Physion and 2X lower rollout MSE on RigidFall.
arXiv Detail & Related papers (2022-10-13T10:00:30Z) - Constructing Neural Network-Based Models for Simulating Dynamical
Systems [59.0861954179401]
Data-driven modeling is an alternative paradigm that seeks to learn an approximation of the dynamics of a system using observations of the true system.
This paper provides a survey of the different ways to construct models of dynamical systems using neural networks.
In addition to the basic overview, we review the related literature and outline the most significant challenges from numerical simulations that this modeling paradigm must overcome.
arXiv Detail & Related papers (2021-11-02T10:51:42Z) - Learning Mesh-Based Simulation with Graph Networks [20.29893312074383]
We introduce MeshGraphNets, a framework for learning mesh-based simulations using graph neural networks.
Our results show it can accurately predict the dynamics of a wide range of physical systems, including aerodynamics, structural mechanics, and cloth.
arXiv Detail & Related papers (2020-10-07T13:34:49Z) - Learning to Simulate Complex Physics with Graph Networks [68.43901833812448]
We present a machine learning framework and model implementation that can learn to simulate a wide variety of challenging physical domains.
Our framework---which we term "Graph Network-based Simulators" (GNS)--represents the state of a physical system with particles, expressed as nodes in a graph, and computes dynamics via learned message-passing.
Our results show that our model can generalize from single-timestep predictions with thousands of particles during training, to different initial conditions, thousands of timesteps, and at least an order of magnitude more particles at test time.
arXiv Detail & Related papers (2020-02-21T16:44:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.