Universal Spreading Dynamics in Quasiperiodic Non-Hermitian Systems
- URL: http://arxiv.org/abs/2412.01301v1
- Date: Mon, 02 Dec 2024 09:13:43 GMT
- Title: Universal Spreading Dynamics in Quasiperiodic Non-Hermitian Systems
- Authors: Ze-Yu Xing, Shu Chen, Haiping Hu,
- Abstract summary: Non-Hermitian systems exhibit a distinctive type of wave propagation, due to the intricate interplay of non-Hermiticity and disorder.
We investigate the spreading dynamics in the archetypal non-Hermitian Aubry-Andr'e model with quasiperiodic disorder.
- Score: 4.350531579293999
- License:
- Abstract: Non-Hermitian systems exhibit a distinctive type of wave propagation, due to the intricate interplay of non-Hermiticity and disorder. Here, we investigate the spreading dynamics in the archetypal non-Hermitian Aubry-Andr\'e model with quasiperiodic disorder. We uncover counter-intuitive transport behaviors: subdiffusion with a spreading exponent $\delta=1/3$ in the localized regime and diffusion with $\delta=1/2$ in the delocalized regime, in stark contrast to their Hermitian counterparts (halted vs. ballistic). We then establish a unified framework from random-variable perspective to determine the universal scaling relations in both regimes for generic disordered non-Hermitian systems. An efficient method is presented to extract the spreading exponents from Lyapunov exponents. The observed subdiffusive or diffusive transport in our model stems from Van Hove singularities at the tail of imaginary density of states, as corroborated by Lyapunov-exponent analysis.
Related papers
- Universal non-Hermitian transport in disordered systems [9.839533757480094]
In disordered Hermitian systems, localization of energy eigenstates prohibits wave propagation.
In non-Hermitian systems, wave propagation is possible even when the eigenstates of Hamiltonian are exponentially localized.
arXiv Detail & Related papers (2024-11-29T18:09:40Z) - Non-asymptotic bounds for forward processes in denoising diffusions: Ornstein-Uhlenbeck is hard to beat [49.1574468325115]
This paper presents explicit non-asymptotic bounds on the forward diffusion error in total variation (TV)
We parametrise multi-modal data distributions in terms of the distance $R$ to their furthest modes and consider forward diffusions with additive and multiplicative noise.
arXiv Detail & Related papers (2024-08-25T10:28:31Z) - Three perspectives on entropy dynamics in a non-Hermitian two-state system [41.94295877935867]
entropy dynamics as an indicator of physical behavior in an open two-state system with balanced gain and loss is presented.
We distinguish the perspective taken in utilizing the conventional framework of Hermitian-adjoint states from an approach that is based on biorthogonal-adjoint states and a third case based on an isospectral mapping.
arXiv Detail & Related papers (2024-04-04T14:45:28Z) - Causal Modeling with Stationary Diffusions [89.94899196106223]
We learn differential equations whose stationary densities model a system's behavior under interventions.
We show that they generalize to unseen interventions on their variables, often better than classical approaches.
Our inference method is based on a new theoretical result that expresses a stationarity condition on the diffusion's generator in a reproducing kernel Hilbert space.
arXiv Detail & Related papers (2023-10-26T14:01:17Z) - Universal stability of coherently diffusive 1D systems with respect to decoherence [0.0]
We show that transport is exceptionally stable against decoherent noise when coherent diffusion is present.
Our results might shed new light on the functionality of many biological systems, which often operate at the border between the ballistic and localized regimes.
arXiv Detail & Related papers (2023-07-11T15:49:51Z) - Lipschitz Singularities in Diffusion Models [64.28196620345808]
Diffusion models often display the infinite Lipschitz property of the network with respect to time variable near the zero point.
We propose a novel approach, dubbed E-TSDM, which alleviates the Lipschitz singularities of the diffusion model near the zero point.
Our work may advance the understanding of the general diffusion process, and also provide insights for the design of diffusion models.
arXiv Detail & Related papers (2023-06-20T03:05:28Z) - Sufficient condition for gapless spin-boson Lindbladians, and its
connection to dissipative time-crystals [64.76138964691705]
We discuss a sufficient condition for gapless excitations in the Lindbladian master equation for collective spin-boson systems.
We argue that gapless modes can lead to persistent dynamics in the spin observables with the possible formation of dissipative time-crystals.
arXiv Detail & Related papers (2022-09-26T18:34:59Z) - Unusual wave-packet spreading and entanglement dynamics in non-Hermitian
disordered many-body systems [0.0]
Non-Hermiticity and dephasing realize unconventional entanglement evolution in a disordered quantum medium.
We first consider how wave packet spreads in a non-Hermitian disordered system for demonstraing that it is very different from the Hermitian case.
We then analyze how the entanglement entropy of the system evolves in the interacting non-Hermitian model.
arXiv Detail & Related papers (2021-09-28T14:43:54Z) - Long-lived period-doubled edge modes of interacting and disorder-free
Floquet spin chains [68.8204255655161]
We show that even in the absence of disorder, and in the presence of bulk heating, $pi$ edge modes are long lived.
A tunneling estimate for the lifetime is obtained by mapping the stroboscopic time-evolution to dynamics of a single particle in Krylov subspace.
arXiv Detail & Related papers (2021-05-28T12:13:14Z) - Anisotropy-mediated reentrant localization [62.997667081978825]
We consider a 2d dipolar system, $d=2$, with the generalized dipole-dipole interaction $sim r-a$, and the power $a$ controlled experimentally in trapped-ion or Rydberg-atom systems.
We show that the spatially homogeneous tilt $beta$ of the dipoles giving rise to the anisotropic dipole exchange leads to the non-trivial reentrant localization beyond the locator expansion.
arXiv Detail & Related papers (2020-01-31T19:00:01Z) - Skin superfluid, topological Mott insulators, and asymmetric dynamics in
interacting non-Hermitian Aubry-Andre-Harper models [3.779287142403951]
We study the dynamics of a 1D interacting non-Hermitian Aubry-Andre-Harper model for bosons.
We find stable ground states in the superfluid and Mott insulating regimes.
arXiv Detail & Related papers (2020-01-20T12:55:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.