Universal non-Hermitian transport in disordered systems
- URL: http://arxiv.org/abs/2411.19905v1
- Date: Fri, 29 Nov 2024 18:09:40 GMT
- Title: Universal non-Hermitian transport in disordered systems
- Authors: Bo Li, Chuan Chen, Zhong Wang,
- Abstract summary: In disordered Hermitian systems, localization of energy eigenstates prohibits wave propagation.<n>In non-Hermitian systems, wave propagation is possible even when the eigenstates of Hamiltonian are exponentially localized.
- Score: 9.839533757480094
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In disordered Hermitian systems, localization of energy eigenstates prohibits wave propagation. In non-Hermitian systems, however, wave propagation is possible even when the eigenstates of Hamiltonian are exponentially localized by disorders. We find in this regime that non-Hermitian wave propagation exhibits novel universal scaling behaviors without Hermitian counterpart. Furthermore, our theory demonstrates how the tail of imaginary-part density of states dictates wave propagation in the long-time limit. Specifically, for the three typical classes, namely the Gaussian, the uniform, and the linear imaginary-part density of states, we obtain logarithmically suppressed sub-ballistic transport, and two types of subdiffusion with exponents that depend only on spatial dimensions, respectively. Our work highlights the fundamental differences between Hermitian and non-Hermitian Anderson localization, and uncovers unique universality in non-Hermitian wave propagation.
Related papers
- Symmetries, Conservation Laws and Entanglement in Non-Hermitian Fermionic Lattices [37.69303106863453]
Non-Hermitian quantum many-body systems feature steady-state entanglement transitions driven by unitary dynamics and dissipation.
We show that the steady state is obtained by filling single-particle right eigenstates with the largest imaginary part of the eigenvalue.
We illustrate these principles in the Hatano-Nelson model with periodic boundary conditions and the non-Hermitian Su-Schrieffer-Heeger model.
arXiv Detail & Related papers (2025-04-11T14:06:05Z) - Theory of the correlated quantum Zeno effect in a monitored qubit dimer [41.94295877935867]
We show how the competition between two measurement processes give rise to two distinct Quantum Zeno (QZ) regimes.
We develop a theory based on a Gutzwiller ansatz for the wavefunction that is able to capture the structure of the Hilbert phase diagram.
We show how the two QZ regimes are intimately connected to the topology of the flow of the underlying non-Hermitian Hamiltonian governing the no-click evolution.
arXiv Detail & Related papers (2025-03-28T19:44:48Z) - Quantum geometry of non-Hermitian systems [0.0]
Berry curvature characterizes one aspect of the geometry of quantum states.
In non-Hermitian systems, wave packet dynamics is enriched by terms that can be expressed as generalizations of the Berry connection to non-orthogonal eigenstates.
arXiv Detail & Related papers (2025-03-17T18:00:10Z) - Universal Spreading Dynamics in Quasiperiodic Non-Hermitian Systems [4.350531579293999]
Non-Hermitian systems exhibit a distinctive type of wave propagation, due to the intricate interplay of non-Hermiticity and disorder.
We investigate the spreading dynamics in the archetypal non-Hermitian Aubry-Andr'e model with quasiperiodic disorder.
arXiv Detail & Related papers (2024-12-02T09:13:43Z) - Critical Fermions are Universal Embezzlers [44.99833362998488]
We show that universal embezzlers are ubiquitous in many-body physics.
The same property holds in locally-interacting, dual spin chains via the Jordan-Wigner transformation.
arXiv Detail & Related papers (2024-06-17T17:03:41Z) - Quantized Thouless pumps protected by interactions in dimerized Rydberg tweezer arrays [41.94295877935867]
In the noninteracting case, quantized Thouless pumps can only occur when a topological singularity is encircled adiabatically.
In the presence of interactions, such topological transport can even persist for exotic paths in which the system gets arbitrarily close to the noninteracting singularity.
arXiv Detail & Related papers (2024-02-14T16:58:21Z) - Non-Hermitian extended midgap states and bound states in the continuum [0.0]
We find two flavours of bound states in the continuum, both stable even in the absence of chiral symmetry.
Results clarify fundamental aspects of topology, and symmetry in the light of different approaches to the anomalous non-Hermitan bulk-boundary correspondence.
arXiv Detail & Related papers (2023-10-27T16:58:04Z) - Measurement phase transitions in the no-click limit as quantum phase
transitions of a non-hermitean vacuum [77.34726150561087]
We study phase transitions occurring in the stationary state of the dynamics of integrable many-body non-Hermitian Hamiltonians.
We observe that the entanglement phase transitions occurring in the stationary state have the same nature as that occurring in the vacuum of the non-hermitian Hamiltonian.
arXiv Detail & Related papers (2023-01-18T09:26:02Z) - Localization control born of intertwined quasiperiodicity and
non-Hermiticity [0.0]
We show for the first time that the intertwined quasiperiodicity and non-Hermiticity can give rise to striking effects.
In particular, we explore the wave function localization character in the Aubry-Andre-Fibonacci (AAF) model.
arXiv Detail & Related papers (2022-11-25T19:00:05Z) - Unusual wave-packet spreading and entanglement dynamics in non-Hermitian
disordered many-body systems [0.0]
Non-Hermiticity and dephasing realize unconventional entanglement evolution in a disordered quantum medium.
We first consider how wave packet spreads in a non-Hermitian disordered system for demonstraing that it is very different from the Hermitian case.
We then analyze how the entanglement entropy of the system evolves in the interacting non-Hermitian model.
arXiv Detail & Related papers (2021-09-28T14:43:54Z) - Non-equilibrium stationary states of quantum non-Hermitian lattice
models [68.8204255655161]
We show how generic non-Hermitian tight-binding lattice models can be realized in an unconditional, quantum-mechanically consistent manner.
We focus on the quantum steady states of such models for both fermionic and bosonic systems.
arXiv Detail & Related papers (2021-03-02T18:56:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.