Explainable fault and severity classification for rolling element bearings using Kolmogorov-Arnold networks
- URL: http://arxiv.org/abs/2412.01322v2
- Date: Wed, 04 Dec 2024 11:53:32 GMT
- Title: Explainable fault and severity classification for rolling element bearings using Kolmogorov-Arnold networks
- Authors: Spyros Rigas, Michalis Papachristou, Ioannis Sotiropoulos, Georgios Alexandridis,
- Abstract summary: Bearing faults are a leading cause of machinery failures.
This study utilizes Kolmogorov-Arnold Networks to address these challenges.
It produces lightweight models that deliver explainable results.
- Score: 4.46753539114796
- License:
- Abstract: Rolling element bearings are critical components of rotating machinery, with their performance directly influencing the efficiency and reliability of industrial systems. At the same time, bearing faults are a leading cause of machinery failures, often resulting in costly downtime, reduced productivity, and, in extreme cases, catastrophic damage. This study presents a methodology that utilizes Kolmogorov-Arnold Networks to address these challenges through automatic feature selection, hyperparameter tuning and interpretable fault analysis within a unified framework. By training shallow network architectures and minimizing the number of selected features, the framework produces lightweight models that deliver explainable results through feature attribution and symbolic representations of their activation functions. Validated on two widely recognized datasets for bearing fault diagnosis, the framework achieved perfect F1-Scores for fault detection and high performance in fault and severity classification tasks, including 100% F1-Scores in most cases. Notably, it demonstrated adaptability by handling diverse fault types, such as imbalance and misalignment, within the same dataset. The symbolic representations enhanced model interpretability, while feature attribution offered insights into the optimal feature types or signals for each studied task. These results highlight the framework's potential for practical applications, such as real-time machinery monitoring, and for scientific research requiring efficient and explainable models.
Related papers
- A Hybrid Framework for Statistical Feature Selection and Image-Based Noise-Defect Detection [55.2480439325792]
This paper presents a hybrid framework that integrates both statistical feature selection and classification techniques to improve defect detection accuracy.
We present around 55 distinguished features that are extracted from industrial images, which are then analyzed using statistical methods.
By integrating these methods with flexible machine learning applications, the proposed framework improves detection accuracy and reduces false positives and misclassifications.
arXiv Detail & Related papers (2024-12-11T22:12:21Z) - Machine Learning for Pre/Post Flight UAV Rotor Defect Detection Using Vibration Analysis [54.550658461477106]
Unmanned Aerial Vehicles (UAVs) will be critical infrastructural components of future smart cities.
In order to operate efficiently, UAV reliability must be ensured by constant monitoring for faults and failures.
This paper leverages signal processing and Machine Learning methods to analyze the data of a comprehensive vibrational analysis to determine the presence of rotor blade defects.
arXiv Detail & Related papers (2024-04-24T13:50:27Z) - A Closer Look at Bearing Fault Classification Approaches [1.9531938396288886]
Rolling bearing fault diagnosis has garnered increased attention in recent years.
Recent technological advances have enabled monitoring the health of these assets at scale.
Rolling bearing fault diagnosis has garnered increased attention in recent years.
arXiv Detail & Related papers (2023-09-29T06:11:11Z) - Causal Disentanglement Hidden Markov Model for Fault Diagnosis [55.90917958154425]
We propose a Causal Disentanglement Hidden Markov model (CDHM) to learn the causality in the bearing fault mechanism.
Specifically, we make full use of the time-series data and progressively disentangle the vibration signal into fault-relevant and fault-irrelevant factors.
To expand the scope of the application, we adopt unsupervised domain adaptation to transfer the learned disentangled representations to other working environments.
arXiv Detail & Related papers (2023-08-06T05:58:45Z) - Robustness and Generalization Performance of Deep Learning Models on
Cyber-Physical Systems: A Comparative Study [71.84852429039881]
Investigation focuses on the models' ability to handle a range of perturbations, such as sensor faults and noise.
We test the generalization and transfer learning capabilities of these models by exposing them to out-of-distribution (OOD) samples.
arXiv Detail & Related papers (2023-06-13T12:43:59Z) - Novel features for the detection of bearing faults in railway vehicles [88.89591720652352]
We introduce Mel-Frequency Cepstral Coefficients (MFCCs) and features extracted from the Amplitude Modulation Spectrogram (AMS) as features for the detection of bearing faults.
arXiv Detail & Related papers (2023-04-14T10:09:50Z) - Synthesizing Rolling Bearing Fault Samples in New Conditions: A
framework based on a modified CGAN [1.0569625612398386]
Bearing fault diagnosis and condition monitoring is essential for reducing operational costs and downtime in numerous industries.
In this paper, a novel algorithm based on Conditional Generative Adversarial Networks (CGANs) is trained on the normal and fault data on any actual fault conditions.
The proposed method is validated on a real-world bearing dataset, and fault data are generated for different conditions.
arXiv Detail & Related papers (2022-06-24T04:47:08Z) - Fault Detection and Diagnosis with Imbalanced and Noisy Data: A Hybrid
Framework for Rotating Machinery [2.580765958706854]
Fault diagnosis plays an essential role in reducing the maintenance costs of rotating machinery manufacturing systems.
Traditional Fault Detection and Diagnosis (FDD) frameworks get poor performances when dealing with real-world circumstances.
This paper proposes a hybrid framework which uses the three aforementioned components to achieve an effective signal-based FDD system.
arXiv Detail & Related papers (2022-02-09T01:09:59Z) - Few-Shot Bearing Fault Diagnosis Based on Model-Agnostic Meta-Learning [3.8015092217142223]
We propose a few-shot learning framework for bearing fault diagnosis based on model-agnostic meta-learning (MAML)
Case studies show that the proposed framework achieves an overall accuracy up to 25% higher than a Siamese network-based benchmark study.
arXiv Detail & Related papers (2020-07-25T04:03:18Z) - Influence Functions in Deep Learning Are Fragile [52.31375893260445]
influence functions approximate the effect of samples in test-time predictions.
influence estimates are fairly accurate for shallow networks.
Hessian regularization is important to get highquality influence estimates.
arXiv Detail & Related papers (2020-06-25T18:25:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.