Machine Learning for Pre/Post Flight UAV Rotor Defect Detection Using Vibration Analysis
- URL: http://arxiv.org/abs/2404.15880v1
- Date: Wed, 24 Apr 2024 13:50:27 GMT
- Title: Machine Learning for Pre/Post Flight UAV Rotor Defect Detection Using Vibration Analysis
- Authors: Alexandre Gemayel, Dimitrios Michael Manias, Abdallah Shami,
- Abstract summary: Unmanned Aerial Vehicles (UAVs) will be critical infrastructural components of future smart cities.
In order to operate efficiently, UAV reliability must be ensured by constant monitoring for faults and failures.
This paper leverages signal processing and Machine Learning methods to analyze the data of a comprehensive vibrational analysis to determine the presence of rotor blade defects.
- Score: 54.550658461477106
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Unmanned Aerial Vehicles (UAVs) will be critical infrastructural components of future smart cities. In order to operate efficiently, UAV reliability must be ensured by constant monitoring for faults and failures. To this end, the work presented in this paper leverages signal processing and Machine Learning (ML) methods to analyze the data of a comprehensive vibrational analysis to determine the presence of rotor blade defects during pre and post-flight operation. With the help of dimensionality reduction techniques, the Random Forest algorithm exhibited the best performance and detected defective rotor blades perfectly. Additionally, a comprehensive analysis of the impact of various feature subsets is presented to gain insight into the factors affecting the model's classification decision process.
Related papers
- Exploring the Determinants of Pedestrian Crash Severity Using an AutoML Approach [0.0]
The research employs AutoML to assess the effects of various explanatory variables on crash outcomes.
The study incorporates SHAP (SHapley Additive exPlanations) to interpret the contributions of individual features in the predictive model.
arXiv Detail & Related papers (2024-06-07T22:02:36Z) - Comprehensive Study Of Predictive Maintenance In Industries Using Classification Models And LSTM Model [0.0]
The study aims to delve into various machine learning classification techniques, including Support Vector Machine (SVM), Random Forest, Logistic Regression, and Convolutional Neural Network LSTM-Based, for predicting and analyzing machine performance.
The primary objective of the study is to assess these algorithms' performance in predicting and analyzing machine performance, considering factors such as accuracy, precision, recall, and F1 score.
arXiv Detail & Related papers (2024-03-15T12:47:45Z) - An Improved Anomaly Detection Model for Automated Inspection of Power Line Insulators [0.0]
Inspection of insulators is important to ensure reliable operation of the power system.
Deep learning is being increasingly exploited to automate the inspection process.
This article proposes the use of anomaly detection along with object detection in a two-stage approach for incipient fault detection.
arXiv Detail & Related papers (2023-11-14T11:36:20Z) - Ball Mill Fault Prediction Based on Deep Convolutional Auto-Encoding
Network [3.673613706096849]
This paper presents an anomaly detection method based on Deep Convolutional Auto-encoding Neural Networks (DCAN) for addressing the issue of ball mill bearing fault detection.
The proposed approach leverages vibration data collected during normal operation for training, overcoming challenges such as labeling issues and data imbalance often encountered in supervised learning methods.
The paper describes the practical deployment of the DCAN-based anomaly detection model for bearing fault detection, utilizing data from the ball mill bearings of Wuhan Iron & Steel Resources Group and fault data from NASA's bearing vibration dataset.
arXiv Detail & Related papers (2023-11-09T17:49:07Z) - Causal Disentanglement Hidden Markov Model for Fault Diagnosis [55.90917958154425]
We propose a Causal Disentanglement Hidden Markov model (CDHM) to learn the causality in the bearing fault mechanism.
Specifically, we make full use of the time-series data and progressively disentangle the vibration signal into fault-relevant and fault-irrelevant factors.
To expand the scope of the application, we adopt unsupervised domain adaptation to transfer the learned disentangled representations to other working environments.
arXiv Detail & Related papers (2023-08-06T05:58:45Z) - A Robust and Explainable Data-Driven Anomaly Detection Approach For
Power Electronics [56.86150790999639]
We present two anomaly detection and classification approaches, namely the Matrix Profile algorithm and anomaly transformer.
The Matrix Profile algorithm is shown to be well suited as a generalizable approach for detecting real-time anomalies in streaming time-series data.
A series of custom filters is created and added to the detector to tune its sensitivity, recall, and detection accuracy.
arXiv Detail & Related papers (2022-09-23T06:09:35Z) - Anomaly Detection for Unmanned Aerial Vehicle Sensor Data Using a
Stacked Recurrent Autoencoder Method with Dynamic Thresholding [0.3441021278275805]
This paper proposes a system incorporating a Long Short-Term Memory (LSTM) Deep Learning Autoencoder based method with a novel dynamic thresholding algorithm and weighted loss function for anomaly detection of a UAV dataset.
The dynamic thresholding and weighted loss functions showed promising improvements to the standard static thresholding method, both in accuracy-related performance metrics and in speed of true fault detection.
arXiv Detail & Related papers (2022-03-09T14:16:14Z) - DAE : Discriminatory Auto-Encoder for multivariate time-series anomaly
detection in air transportation [68.8204255655161]
We propose a novel anomaly detection model called Discriminatory Auto-Encoder (DAE)
It uses the baseline of a regular LSTM-based auto-encoder but with several decoders, each getting data of a specific flight phase.
Results show that the DAE achieves better results in both accuracy and speed of detection.
arXiv Detail & Related papers (2021-09-08T14:07:55Z) - Bayesian Optimization with Machine Learning Algorithms Towards Anomaly
Detection [66.05992706105224]
In this paper, an effective anomaly detection framework is proposed utilizing Bayesian Optimization technique.
The performance of the considered algorithms is evaluated using the ISCX 2012 dataset.
Experimental results show the effectiveness of the proposed framework in term of accuracy rate, precision, low-false alarm rate, and recall.
arXiv Detail & Related papers (2020-08-05T19:29:35Z) - Predictive Maintenance for Edge-Based Sensor Networks: A Deep
Reinforcement Learning Approach [68.40429597811071]
The risk of unplanned equipment downtime can be minimized through Predictive Maintenance of revenue generating assets.
A model-free Deep Reinforcement Learning algorithm is proposed for predictive equipment maintenance from an equipment-based sensor network context.
Unlike traditional black-box regression models, the proposed algorithm self-learns an optimal maintenance policy and provides actionable recommendation for each equipment.
arXiv Detail & Related papers (2020-07-07T10:00:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.