Practical Performative Policy Learning with Strategic Agents
- URL: http://arxiv.org/abs/2412.01344v2
- Date: Wed, 11 Dec 2024 03:49:51 GMT
- Title: Practical Performative Policy Learning with Strategic Agents
- Authors: Qianyi Chen, Ying Chen, Bo Li,
- Abstract summary: We study the performative policy learning problem, where agents adjust their features in response to a released policy to improve their potential outcomes.
We propose a gradient-based policy optimization algorithm with a differentiable classifier as a substitute for the high-dimensional distribution map.
- Score: 8.361090623217246
- License:
- Abstract: This paper studies the performative policy learning problem, where agents adjust their features in response to a released policy to improve their potential outcomes, inducing an endogenous distribution shift. There has been growing interest in training machine learning models in strategic environments, including strategic classification and performative prediction. However, existing approaches often rely on restrictive parametric assumptions: micro-level utility models in strategic classification and macro-level data distribution maps in performative prediction, severely limiting scalability and generalizability. We approach this problem as a complex causal inference task, relaxing parametric assumptions on both micro-level agent behavior and macro-level data distribution. Leveraging bounded rationality, we uncover a practical low-dimensional structure in distribution shifts and construct an effective mediator in the causal path from the deployed model to the shifted data. We then propose a gradient-based policy optimization algorithm with a differentiable classifier as a substitute for the high-dimensional distribution map. Our algorithm efficiently utilizes batch feedback and limited manipulation patterns. Our approach achieves high sample efficiency compared to methods reliant on bandit feedback or zero-order optimization. We also provide theoretical guarantees for algorithmic convergence. Extensive and challenging experiments on high-dimensional settings demonstrate our method's practical efficacy.
Related papers
- Achieving $\widetilde{\mathcal{O}}(\sqrt{T})$ Regret in Average-Reward POMDPs with Known Observation Models [56.92178753201331]
We tackle average-reward infinite-horizon POMDPs with an unknown transition model.
We present a novel and simple estimator that overcomes this barrier.
arXiv Detail & Related papers (2025-01-30T22:29:41Z) - Optimal Classification under Performative Distribution Shift [13.508249764979075]
We propose a novel view in which performative effects are modelled as push-forward measures.
We prove the convexity of the performative risk under a new set of assumptions.
We also establish a connection with adversarially robust classification by reformulating the minimization of the performative risk as a min-max variational problem.
arXiv Detail & Related papers (2024-11-04T12:20:13Z) - Generalization Bounds of Surrogate Policies for Combinatorial Optimization Problems [61.580419063416734]
A recent stream of structured learning approaches has improved the practical state of the art for a range of optimization problems.
The key idea is to exploit the statistical distribution over instances instead of dealing with instances separately.
In this article, we investigate methods that smooth the risk by perturbing the policy, which eases optimization and improves the generalization error.
arXiv Detail & Related papers (2024-07-24T12:00:30Z) - Learning Optimal Deterministic Policies with Stochastic Policy Gradients [62.81324245896716]
Policy gradient (PG) methods are successful approaches to deal with continuous reinforcement learning (RL) problems.
In common practice, convergence (hyper)policies are learned only to deploy their deterministic version.
We show how to tune the exploration level used for learning to optimize the trade-off between the sample complexity and the performance of the deployed deterministic policy.
arXiv Detail & Related papers (2024-05-03T16:45:15Z) - Decentralized Learning Strategies for Estimation Error Minimization with Graph Neural Networks [94.2860766709971]
We address the challenge of sampling and remote estimation for autoregressive Markovian processes in a wireless network with statistically-identical agents.
Our goal is to minimize time-average estimation error and/or age of information with decentralized scalable sampling and transmission policies.
arXiv Detail & Related papers (2024-04-04T06:24:11Z) - Pessimistic Causal Reinforcement Learning with Mediators for Confounded Offline Data [17.991833729722288]
We propose a novel policy learning algorithm, PESsimistic CAusal Learning (PESCAL)
Our key observation is that, by incorporating auxiliary variables that mediate the effect of actions on system dynamics, it is sufficient to learn a lower bound of the mediator distribution function, instead of the Q-function.
We provide theoretical guarantees for the algorithms we propose, and demonstrate their efficacy through simulations, as well as real-world experiments utilizing offline datasets from a leading ride-hailing platform.
arXiv Detail & Related papers (2024-03-18T14:51:19Z) - Querying Easily Flip-flopped Samples for Deep Active Learning [63.62397322172216]
Active learning is a machine learning paradigm that aims to improve the performance of a model by strategically selecting and querying unlabeled data.
One effective selection strategy is to base it on the model's predictive uncertainty, which can be interpreted as a measure of how informative a sample is.
This paper proposes the it least disagree metric (LDM) as the smallest probability of disagreement of the predicted label.
arXiv Detail & Related papers (2024-01-18T08:12:23Z) - Bi-Level Offline Policy Optimization with Limited Exploration [1.8130068086063336]
We study offline reinforcement learning (RL) which seeks to learn a good policy based on a fixed, pre-collected dataset.
We propose a bi-level structured policy optimization algorithm that models a hierarchical interaction between the policy (upper-level) and the value function (lower-level)
We evaluate our model using a blend of synthetic, benchmark, and real-world datasets for offline RL, showing that it performs competitively with state-of-the-art methods.
arXiv Detail & Related papers (2023-10-10T02:45:50Z) - Nonparametric Linear Feature Learning in Regression Through Regularisation [0.0]
We propose a novel method for joint linear feature learning and non-parametric function estimation.
By using alternative minimisation, we iteratively rotate the data to improve alignment with leading directions.
We establish that the expected risk of our method converges to the minimal risk under minimal assumptions and with explicit rates.
arXiv Detail & Related papers (2023-07-24T12:52:55Z) - Discrete Action On-Policy Learning with Action-Value Critic [72.20609919995086]
Reinforcement learning (RL) in discrete action space is ubiquitous in real-world applications, but its complexity grows exponentially with the action-space dimension.
We construct a critic to estimate action-value functions, apply it on correlated actions, and combine these critic estimated action values to control the variance of gradient estimation.
These efforts result in a new discrete action on-policy RL algorithm that empirically outperforms related on-policy algorithms relying on variance control techniques.
arXiv Detail & Related papers (2020-02-10T04:23:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.