Demystifying the Accuracy-Interpretability Trade-Off: A Case Study of Inferring Ratings from Reviews
- URL: http://arxiv.org/abs/2503.07914v1
- Date: Mon, 10 Mar 2025 23:17:46 GMT
- Title: Demystifying the Accuracy-Interpretability Trade-Off: A Case Study of Inferring Ratings from Reviews
- Authors: Pranjal Atrey, Michael P. Brundage, Min Wu, Sanghamitra Dutta,
- Abstract summary: Interpretable machine learning models offer understandable reasoning behind their decision-making process.<n>This trade-off between interpretability and model performance has sparked discussions around the deployment of AI.
- Score: 11.905166272929263
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Interpretable machine learning models offer understandable reasoning behind their decision-making process, though they may not always match the performance of their black-box counterparts. This trade-off between interpretability and model performance has sparked discussions around the deployment of AI, particularly in critical applications where knowing the rationale of decision-making is essential for trust and accountability. In this study, we conduct a comparative analysis of several black-box and interpretable models, focusing on a specific NLP use case that has received limited attention: inferring ratings from reviews. Through this use case, we explore the intricate relationship between the performance and interpretability of different models. We introduce a quantitative score called Composite Interpretability (CI) to help visualize the trade-off between interpretability and performance, particularly in the case of composite models. Our results indicate that, in general, the learning performance improves as interpretability decreases, but this relationship is not strictly monotonic, and there are instances where interpretable models are more advantageous.
Related papers
- Bridging Interpretability and Robustness Using LIME-Guided Model Refinement [0.0]
Local Interpretable Model-Agnostic Explanations (LIME) systematically enhance model robustness.<n> Empirical evaluations on multiple benchmark datasets demonstrate that LIME-guided refinement not only improves interpretability but also significantly enhances resistance to adversarial perturbations and generalization to out-of-distribution data.
arXiv Detail & Related papers (2024-12-25T17:32:45Z) - Explaining the Unexplained: Revealing Hidden Correlations for Better Interpretability [1.8274323268621635]
Real Explainer (RealExp) is an interpretability method that decouples the Shapley Value into individual feature importance and feature correlation importance.<n>RealExp enhances interpretability by precisely quantifying both individual feature contributions and their interactions.
arXiv Detail & Related papers (2024-12-02T10:50:50Z) - Calibrating Reasoning in Language Models with Internal Consistency [18.24350001344488]
Large language models (LLMs) have demonstrated impressive capabilities in various reasoning tasks.<n>LLMs often generate text with obvious mistakes and contradictions.<n>In this work, we investigate reasoning in LLMs through the lens of internal representations.
arXiv Detail & Related papers (2024-05-29T02:44:12Z) - VALOR-EVAL: Holistic Coverage and Faithfulness Evaluation of Large Vision-Language Models [57.43276586087863]
Large Vision-Language Models (LVLMs) suffer from hallucination issues, wherein the models generate plausible-sounding but factually incorrect outputs.
Existing benchmarks are often limited in scope, focusing mainly on object hallucinations.
We introduce a multi-dimensional benchmark covering objects, attributes, and relations, with challenging images selected based on associative biases.
arXiv Detail & Related papers (2024-04-22T04:49:22Z) - Cross Feature Selection to Eliminate Spurious Interactions and Single
Feature Dominance Explainable Boosting Machines [0.0]
Interpretability is essential for legal, ethical, and practical reasons.
High-performance models can suffer from spurious interactions with redundant features and single-feature dominance.
In this paper, we explore novel approaches to address these issues by utilizing alternate Cross-feature selection, ensemble features and model configuration alteration techniques.
arXiv Detail & Related papers (2023-07-17T13:47:41Z) - Advancing Counterfactual Inference through Nonlinear Quantile Regression [77.28323341329461]
We propose a framework for efficient and effective counterfactual inference implemented with neural networks.
The proposed approach enhances the capacity to generalize estimated counterfactual outcomes to unseen data.
Empirical results conducted on multiple datasets offer compelling support for our theoretical assertions.
arXiv Detail & Related papers (2023-06-09T08:30:51Z) - Fairness Increases Adversarial Vulnerability [50.90773979394264]
This paper shows the existence of a dichotomy between fairness and robustness, and analyzes when achieving fairness decreases the model robustness to adversarial samples.
Experiments on non-linear models and different architectures validate the theoretical findings in multiple vision domains.
The paper proposes a simple, yet effective, solution to construct models achieving good tradeoffs between fairness and robustness.
arXiv Detail & Related papers (2022-11-21T19:55:35Z) - Explainability in Process Outcome Prediction: Guidelines to Obtain
Interpretable and Faithful Models [77.34726150561087]
We define explainability through the interpretability of the explanations and the faithfulness of the explainability model in the field of process outcome prediction.
This paper contributes a set of guidelines named X-MOP which allows selecting the appropriate model based on the event log specifications.
arXiv Detail & Related papers (2022-03-30T05:59:50Z) - Influence Tuning: Demoting Spurious Correlations via Instance
Attribution and Instance-Driven Updates [26.527311287924995]
influence tuning can help deconfounding the model from spurious patterns in data.
We show that in a controlled setup, influence tuning can help deconfounding the model from spurious patterns in data.
arXiv Detail & Related papers (2021-10-07T06:59:46Z) - Multilingual Multi-Aspect Explainability Analyses on Machine Reading Comprehension Models [76.48370548802464]
This paper focuses on conducting a series of analytical experiments to examine the relations between the multi-head self-attention and the final MRC system performance.
We discover that passage-to-question and passage understanding attentions are the most important ones in the question answering process.
Through comprehensive visualizations and case studies, we also observe several general findings on the attention maps, which can be helpful to understand how these models solve the questions.
arXiv Detail & Related papers (2021-08-26T04:23:57Z) - Interpretable Multi-dataset Evaluation for Named Entity Recognition [110.64368106131062]
We present a general methodology for interpretable evaluation for the named entity recognition (NER) task.
The proposed evaluation method enables us to interpret the differences in models and datasets, as well as the interplay between them.
By making our analysis tool available, we make it easy for future researchers to run similar analyses and drive progress in this area.
arXiv Detail & Related papers (2020-11-13T10:53:27Z) - Accurate and Robust Feature Importance Estimation under Distribution
Shifts [49.58991359544005]
PRoFILE is a novel feature importance estimation method.
We show significant improvements over state-of-the-art approaches, both in terms of fidelity and robustness.
arXiv Detail & Related papers (2020-09-30T05:29:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.