Second FRCSyn-onGoing: Winning Solutions and Post-Challenge Analysis to Improve Face Recognition with Synthetic Data
- URL: http://arxiv.org/abs/2412.01383v1
- Date: Mon, 02 Dec 2024 11:12:01 GMT
- Title: Second FRCSyn-onGoing: Winning Solutions and Post-Challenge Analysis to Improve Face Recognition with Synthetic Data
- Authors: Ivan DeAndres-Tame, Ruben Tolosana, Pietro Melzi, Ruben Vera-Rodriguez, Minchul Kim, Christian Rathgeb, Xiaoming Liu, Luis F. Gomez, Aythami Morales, Julian Fierrez, Javier Ortega-Garcia, Zhizhou Zhong, Yuge Huang, Yuxi Mi, Shouhong Ding, Shuigeng Zhou, Shuai He, Lingzhi Fu, Heng Cong, Rongyu Zhang, Zhihong Xiao, Evgeny Smirnov, Anton Pimenov, Aleksei Grigorev, Denis Timoshenko, Kaleb Mesfin Asfaw, Cheng Yaw Low, Hao Liu, Chuyi Wang, Qing Zuo, Zhixiang He, Hatef Otroshi Shahreza, Anjith George, Alexander Unnervik, Parsa Rahimi, Sébastien Marcel, Pedro C. Neto, Marco Huber, Jan Niklas Kolf, Naser Damer, Fadi Boutros, Jaime S. Cardoso, Ana F. Sequeira, Andrea Atzori, Gianni Fenu, Mirko Marras, Vitomir Štruc, Jiang Yu, Zhangjie Li, Jichun Li, Weisong Zhao, Zhen Lei, Xiangyu Zhu, Xiao-Yu Zhang, Bernardo Biesseck, Pedro Vidal, Luiz Coelho, Roger Granada, David Menotti,
- Abstract summary: 2nd FRCSyn-onGoing challenge is based on the 2nd Face Recognition Challenge in the Era of Synthetic Data (FRCSyn), originally launched at CVPR 2024.
We focus on exploring the use of synthetic data both individually and in combination with real data to solve current challenges in face recognition.
- Score: 104.30479583607918
- License:
- Abstract: Synthetic data is gaining increasing popularity for face recognition technologies, mainly due to the privacy concerns and challenges associated with obtaining real data, including diverse scenarios, quality, and demographic groups, among others. It also offers some advantages over real data, such as the large amount of data that can be generated or the ability to customize it to adapt to specific problem-solving needs. To effectively use such data, face recognition models should also be specifically designed to exploit synthetic data to its fullest potential. In order to promote the proposal of novel Generative AI methods and synthetic data, and investigate the application of synthetic data to better train face recognition systems, we introduce the 2nd FRCSyn-onGoing challenge, based on the 2nd Face Recognition Challenge in the Era of Synthetic Data (FRCSyn), originally launched at CVPR 2024. This is an ongoing challenge that provides researchers with an accessible platform to benchmark i) the proposal of novel Generative AI methods and synthetic data, and ii) novel face recognition systems that are specifically proposed to take advantage of synthetic data. We focus on exploring the use of synthetic data both individually and in combination with real data to solve current challenges in face recognition such as demographic bias, domain adaptation, and performance constraints in demanding situations, such as age disparities between training and testing, changes in the pose, or occlusions. Very interesting findings are obtained in this second edition, including a direct comparison with the first one, in which synthetic databases were restricted to DCFace and GANDiffFace.
Related papers
- Second Edition FRCSyn Challenge at CVPR 2024: Face Recognition Challenge in the Era of Synthetic Data [104.45155847778584]
This paper presents an overview of the 2nd edition of the Face Recognition Challenge in the Era of Synthetic Data (FRCSyn)
FRCSyn aims to investigate the use of synthetic data in face recognition to address current technological limitations.
arXiv Detail & Related papers (2024-04-16T08:15:10Z) - Best Practices and Lessons Learned on Synthetic Data [83.63271573197026]
The success of AI models relies on the availability of large, diverse, and high-quality datasets.
Synthetic data has emerged as a promising solution by generating artificial data that mimics real-world patterns.
arXiv Detail & Related papers (2024-04-11T06:34:17Z) - SDFR: Synthetic Data for Face Recognition Competition [51.9134406629509]
Large-scale face recognition datasets are collected by crawling the Internet and without individuals' consent, raising legal, ethical, and privacy concerns.
Recently several works proposed generating synthetic face recognition datasets to mitigate concerns in web-crawled face recognition datasets.
This paper presents the summary of the Synthetic Data for Face Recognition (SDFR) Competition held in conjunction with the 18th IEEE International Conference on Automatic Face and Gesture Recognition (FG 2024)
The SDFR competition was split into two tasks, allowing participants to train face recognition systems using new synthetic datasets and/or existing ones.
arXiv Detail & Related papers (2024-04-06T10:30:31Z) - If It's Not Enough, Make It So: Reducing Authentic Data Demand in Face Recognition through Synthetic Faces [16.977459035497162]
Large face datasets are primarily sourced from web-based images, lacking explicit user consent.
In this paper, we examine whether and how synthetic face data can be used to train effective face recognition models.
arXiv Detail & Related papers (2024-04-04T15:45:25Z) - FRCSyn Challenge at WACV 2024:Face Recognition Challenge in the Era of
Synthetic Data [82.5767720132393]
This paper offers an overview of the Face Recognition Challenge in the Era of Synthetic Data (FRCSyn) organized at WACV 2024.
This is the first international challenge aiming to explore the use of synthetic data in face recognition to address existing limitations in the technology.
arXiv Detail & Related papers (2023-11-17T12:15:40Z) - Reimagining Synthetic Tabular Data Generation through Data-Centric AI: A
Comprehensive Benchmark [56.8042116967334]
Synthetic data serves as an alternative in training machine learning models.
ensuring that synthetic data mirrors the complex nuances of real-world data is a challenging task.
This paper explores the potential of integrating data-centric AI techniques to guide the synthetic data generation process.
arXiv Detail & Related papers (2023-10-25T20:32:02Z) - Synthetic Data for Face Recognition: Current State and Future Prospects [14.288753326973984]
This work aims at providing a clear and structured picture of the use-cases of synthetic face data in face recognition.
We discuss the challenges facing the use of synthetic data in face recognition development and several future prospects of synthetic data in the domain of face recognition.
arXiv Detail & Related papers (2023-05-01T18:25:22Z) - On the use of automatically generated synthetic image datasets for
benchmarking face recognition [2.0196229393131726]
Recent advances in Generative Adversarial Networks (GANs) provide a pathway to replace real datasets by synthetic datasets.
Recent advances in Generative Adversarial Networks (GANs) to synthesize realistic face images provide a pathway to replace real datasets by synthetic datasets.
benchmarking results on the synthetic dataset are a good substitution, often providing error rates and system ranking similar to the benchmarking on the real dataset.
arXiv Detail & Related papers (2021-06-08T09:54:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.