ULSR-GS: Ultra Large-scale Surface Reconstruction Gaussian Splatting with Multi-View Geometric Consistency
- URL: http://arxiv.org/abs/2412.01402v1
- Date: Mon, 02 Dec 2024 11:42:35 GMT
- Title: ULSR-GS: Ultra Large-scale Surface Reconstruction Gaussian Splatting with Multi-View Geometric Consistency
- Authors: Zhuoxiao Li, Shanliang Yao, Qizhong Gao, Angel F. Garcia-Fernandez, Yong Yue, Xiaohui Zhu,
- Abstract summary: We present ULSR-GS, a framework dedicated to high-fidelity surface extraction in ultra-large-scale scenes.<n>Specifically, we propose a point-to-photo partitioning approach combined with a multi-view optimal view matching principle.<n>During training, ULSR-GS employs a densification strategy based on multi-view geometric consistency to enhance surface extraction details.
- Score: 2.183054716058417
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: While Gaussian Splatting (GS) demonstrates efficient and high-quality scene rendering and small area surface extraction ability, it falls short in handling large-scale aerial image surface extraction tasks. To overcome this, we present ULSR-GS, a framework dedicated to high-fidelity surface extraction in ultra-large-scale scenes, addressing the limitations of existing GS-based mesh extraction methods. Specifically, we propose a point-to-photo partitioning approach combined with a multi-view optimal view matching principle to select the best training images for each sub-region. Additionally, during training, ULSR-GS employs a densification strategy based on multi-view geometric consistency to enhance surface extraction details. Experimental results demonstrate that ULSR-GS outperforms other state-of-the-art GS-based works on large-scale aerial photogrammetry benchmark datasets, significantly improving surface extraction accuracy in complex urban environments. Project page: https://ulsrgs.github.io.
Related papers
- High-Quality Spatial Reconstruction and Orthoimage Generation Using Efficient 2D Gaussian Splatting [8.251536008292915]
This work presents an alternative technique rooted in 2D Gaussian Splatting (2DGS) for True Digital Orthophoto Maps (TDOMs)
Divide-and-conquer strategy achieves excellent GS training and rendering with high-resolution TDOMs at a lower resource cost.
Experimental results demonstrate the efficiency of large-scale scene reconstruction and high-precision terrain modeling.
arXiv Detail & Related papers (2025-03-25T14:30:37Z) - MVGSR: Multi-View Consistency Gaussian Splatting for Robust Surface Reconstruction [46.081262181141504]
3D Gaussian Splatting (3DGS) has gained significant attention for its high-quality rendering capabilities, ultra-fast training, and inference speeds.
We propose Multi-View Consistency Gaussian Splatting for the domain of Robust Surface Reconstruction (textbfMVGSR)
MVGSR achieves competitive geometric accuracy and rendering fidelity compared to the state-of-the-art surface reconstruction algorithms.
arXiv Detail & Related papers (2025-03-11T06:53:27Z) - Rethinking the Upsampling Layer in Hyperspectral Image Super Resolution [51.98465973507002]
We propose a novel lightweight SHSR network, i.e., LKCA-Net, that incorporates channel attention to calibrate multi-scale channel features of hyperspectral images.
We demonstrate, for the first time, that the low-rank property of the learnable upsampling layer is a key bottleneck in lightweight SHSR methods.
arXiv Detail & Related papers (2025-01-30T15:43:34Z) - PG-SAG: Parallel Gaussian Splatting for Fine-Grained Large-Scale Urban Buildings Reconstruction via Semantic-Aware Grouping [6.160345720038265]
We introduce a parallel Gaussian splatting method, termed PG-SAG, which fully exploits semantic cues for both partitioning and kernel optimization.
Experiments are tested on various urban datasets, the results demonstrated the superior performance of our PG-SAG on building surface reconstruction.
arXiv Detail & Related papers (2025-01-03T07:40:16Z) - GigaGS: Scaling up Planar-Based 3D Gaussians for Large Scene Surface Reconstruction [71.08607897266045]
3D Gaussian Splatting (3DGS) has shown promising performance in novel view synthesis.
We make the first attempt to tackle the challenging task of large-scale scene surface reconstruction.
We propose GigaGS, the first work for high-quality surface reconstruction for large-scale scenes using 3DGS.
arXiv Detail & Related papers (2024-09-10T17:51:39Z) - 3D Gaussian Splatting for Large-scale Surface Reconstruction from Aerial Images [6.076999957937232]
We propose a novel 3DGS-based method for large-scale surface reconstruction using aerial multi-view stereo (MVS) images, named Aerial Gaussian Splatting (AGS)
First, we introduce a data chunking method tailored for large-scale aerial images, making 3DGS feasible for surface reconstruction over extensive scenes.
Second, we integrate the Ray-Gaussian Intersection method into 3DGS to obtain depth and normal information.
arXiv Detail & Related papers (2024-08-31T08:17:24Z) - SAGS: Structure-Aware 3D Gaussian Splatting [53.6730827668389]
We propose a structure-aware Gaussian Splatting method (SAGS) that implicitly encodes the geometry of the scene.
SAGS reflects to state-of-the-art rendering performance and reduced storage requirements on benchmark novel-view synthesis datasets.
arXiv Detail & Related papers (2024-04-29T23:26:30Z) - FSGS: Real-Time Few-shot View Synthesis using Gaussian Splatting [58.41056963451056]
We propose a few-shot view synthesis framework based on 3D Gaussian Splatting.
This framework enables real-time and photo-realistic view synthesis with as few as three training views.
FSGS achieves state-of-the-art performance in both accuracy and rendering efficiency across diverse datasets.
arXiv Detail & Related papers (2023-12-01T09:30:02Z) - Deep Posterior Distribution-based Embedding for Hyperspectral Image
Super-resolution [75.24345439401166]
This paper focuses on how to embed the high-dimensional spatial-spectral information of hyperspectral (HS) images efficiently and effectively.
We formulate HS embedding as an approximation of the posterior distribution of a set of carefully-defined HS embedding events.
Then, we incorporate the proposed feature embedding scheme into a source-consistent super-resolution framework that is physically-interpretable.
Experiments over three common benchmark datasets demonstrate that PDE-Net achieves superior performance over state-of-the-art methods.
arXiv Detail & Related papers (2022-05-30T06:59:01Z) - Hyperspectral Image Segmentation based on Graph Processing over
Multilayer Networks [51.15952040322895]
One important task of hyperspectral image (HSI) processing is the extraction of spectral-spatial features.
We propose several approaches to HSI segmentation based on M-GSP feature extraction.
Our experimental results demonstrate the strength of M-GSP in HSI processing and spectral-spatial information extraction.
arXiv Detail & Related papers (2021-11-29T23:28:18Z) - Hyperspectral Image Super-resolution via Deep Spatio-spectral
Convolutional Neural Networks [32.10057746890683]
We propose a simple and efficient architecture for deep convolutional neural networks to fuse a low-resolution hyperspectral image and a high-resolution multispectral image.
The proposed network architecture achieves best performance compared with recent state-of-the-art hyperspectral image super-resolution approaches.
arXiv Detail & Related papers (2020-05-29T05:56:50Z) - Learning Spatial-Spectral Prior for Super-Resolution of Hyperspectral
Imagery [79.69449412334188]
In this paper, we investigate how to adapt state-of-the-art residual learning based single gray/RGB image super-resolution approaches.
We introduce a spatial-spectral prior network (SSPN) to fully exploit the spatial information and the correlation between the spectra of the hyperspectral data.
Experimental results on some hyperspectral images demonstrate that the proposed SSPSR method enhances the details of the recovered high-resolution hyperspectral images.
arXiv Detail & Related papers (2020-05-18T14:25:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.